

Decoding Cellular Walled Gardens

Vivek Adarsh

PhD Candidate UC Santa Barbara

Let's start with a scenario

8:00 AM morning commute

Hwy 101

No cellular connection

Mobile Internet

Global mobile data

~ 75 exabytes per month (2022)

Mobile traffic (last 5 years)

222%

Cellular Networks

- ~4 Billion LTE users by end of 2020
- Escalating user base
 - O Challenges in sustaining consistent, high-quality service
- Adequate coverage ≠ useable service
- Sudden surge in traffic demand
 - Color Large gatherings
 - O Post-disaster scenarios

Natural Disasters

- > 12 major tropical storms have hit the US in the past 4 years
- > Destruction on a massive scale
- > Hurricane Maria (Puerto Rico)
 - > Knocked out 95% network infrastructure
- > Hurricane Dorian
 - 'Unprecedented' devastation in Northern Bahamas¹

LTE Coverage by Number of Providers - YE 2017

Source: FCC

Third Party Assessment

NETWORK ACCESSIBILITY

VERIFYING PROVIDERS'
CLAIMS

Roadmap

- Estimating Overload in LTE Networks (IMC '19)
 - LTE basics
 - Motivation
 - Overload detection

- Quality of Experience on Mobile Broadband (ongoing)
 - QoE on LTE
 - Measurement campaigns

Third Party Assessment

Typical solutions

Cooperation of telecom providers

Active measurements through multitudes of mobile devices

Problem.

01

Existing solutions are resource and time intensive

02

May not be practical

03

What if passive measurements could help?

Research Question

Can we use off the shelf equipment to enable third party assessment of cellular availability and network quality?

Estimating Overload

• Connection request: Connection Accept

Connection Reject

- Key to reducing overload = Deny access
- eNodeBs (BS) broadcast "rejects"

Channel Type	RLC Mode			
СССН	Transparent (Decodable from passive capture)			
Direction	RRC Message			
Downlink	Connection Setup Connection Reject			
Uplink	Connection Request			

Signaling Radio Bearers (SRBO)

- Quantify the number of reject and request messages
- Non-intrusive, federally compliant
- Off-the-shelf equipment

Dataset	Location	Date	# LTE frames	Capture duration
St. Patrick's day parade (SPD)	Balboa Park, SD	3/16/2019	1.1 Million	76 minutes
Concert shamrock (CSR)	Downtown SD	3/16/2019	1.7 Million	113 minutes
St. Patrick's day parade baseline (SPD_base)	Balboa Park, SD	3/26/2019	275K	65 minutes
Concert shamrock baseline (CSR_base)	Downtown SD	3/26/2019	135K	60 minutes

of Connection Rejects

- Significantly more rejects in SPD and CSR
 - 8X in SPD
 - 15X in CSR
- Bin size: 30 seconds

Phi = Rejects/Requests

Indicates the severity of overload

Bin size: 30 seconds

Phi (SPD, CSR) is consistently higher

waitTime

- waitTime: Back-off time before reconnection attempt
- Contained within every reject message
- Part of overload mitigation scheme
- Longer waitTime in SPD, CSR

Omega Measure

Contained in SIB1 messages

cellBarred flag: UE is not allowed to camp on a particular cell

cellBarred signals # SIB1 messages

20% increase in SPD, CSR

Positive correlation between Omega and overload

Takeaway

We develop a third-party network assessment system to estimate overload that is:

Roadmap

- Estimating Overload in LTE Networks (IMC '19)
 - LTE basics
 - Motivation
 - Overload detection

- Quality of Experience on Mobile Broadband (ongoing)
 - QoE on LTE
 - Measurement campaigns

Domain filled with prior work

Drawbacks:Limited scope
Platform dependency

[SST17] [Gup+19] [MNA17]

Scalability

Vantage Points

- Perspective from within the network
- Discernable insightsabout the network state

But which one to choose?

Taken from Sousa et al. [SQR19]

Is that enough...?

Not always.

Accuracy

How representative the metrics are

Responsiveness

Delay in system's reaction

Design Philosophy

Minimize $\frac{Responsiveness}{Accuracy}$

Research Question

Can over the air passive measurements be used to estimate the quality of experience at the user end?

Measurement Campaigns

Tribal Lands - Southern California

Northwestern New Mexico

- Extensive measurement campaign
- Team of 4 PhD students
- Weeklong measurement drive

Dataset

- Over 200 GB of packet traces
- ~ 1 million temporally varying radio measurements

DATASET

DATASET

LTE COVERAGE MAP

- 6 states
- 2665 miles driven
- 4 major telecom operators
- Over 200,000 "ground truth" datapoints

Field work is challenging but quite rewarding.

This work would not have been possible without my collaborators.

Prof. Elizabeth Belding (UCSB)
Prof. Ellen Zegura (GaTech)
Prof. Arpit Gupta (UCSB)

Vivek Adarsh

vivek@cs.ucsb.edu
https://vivekadarsh.com

References:

- [SST17]: "Beauty and the Burst: Remote identification of encrypted video streams." USENIX Security 2017.
- [Gup+19]: "Requet: Real-time QoE detection for encrypted YouTube traffic. *MMsys 2019*.
- [MNA17]: "Neural adaptive video streaming with Pensieve." Conference of the ACM Special Interest Group on Data Communication 2017.
- [SQR19]: "A survey on QoE-oriented wireless resources scheduling." arXiv preprint arXiv:1705.07839 (2017).
- **[STA19]:** https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/

Thank you