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Abstract. The explosion of mobile broadband as an essential means of
Internet connectivity has made the scalable evaluation and inference of
quality of experience (QoE) for applications delivered over LTE networks
critical. However, direct QoE measurement can be time and resource
intensive. Further, the wireless nature of LTE networks necessitates that
QoE be evaluated in multiple locations per base station as factors such
as signal availability may have significant spatial variation. Based on
our observations that quality of service (QoS) metrics are less time and
resource-intensive to collect, we investigate how QoS can be used to infer
QoE in LTE networks. Using an extensive, novel dataset representing a
variety of network conditions, we design several state-of-the-art predic-
tive models for scalable video QoE inference. We demonstrate that our
models can accurately predict rebuffering events and resolution switch-
ing more than 80% of the time, despite the dataset exhibiting vastly
different QoS and QoE profiles for the location types. We also illustrate
that our classifiers have a high degree of generalizability across multiple
videos from a vast array of genres. Finally, we highlight the importance
of low-cost QoS measurements such as reference signal received power
(RSRP) and throughput in QoE inference through an ablation study.

Keywords: QoE · Video streaming · Network measurement · LTE ·
Digital divide

1 Introduction

More than 60 million people reside in rural regions in the United States [18].
However, cellular deployment is often guided by economic demand, concentrating
deployment in urban areas and leaving economically marginalized and sparsely
populated areas under-served [27]. Few prior studies have focused on assessing
mobile broadband in rural areas of the U.S.; there is a lack of accessible datasets
that are not only comprehensive (include network-level and application-level
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traces) but also representative and inclusive of rural demographics. As a result
of the COVID-19 pandemic, the assessment of the quality of experience (QoE)
for applications delivered over mobile broadband has become urgent as stay-
at-home orders and rapid movement to online schooling and work-from-home
protocols increase the demand for applications that are known to be sensitive
to network quality, such as video streaming and interactive video chat [50]. As
a result, communities without access to usable, high speed broadband, such as
many rural communities, are particularly disadvantaged [8,32].

Unfortunately, the evaluation of user quality of experience for video stream-
ing applications accessed over LTE in regions where people are most likely to be
smartphone dependent [27,28,34] poses a significant scalability challenge. QoE
metric collection over LTE networks in a geographic area requires time and
resource intensive measurements for each network provider. As a result, exper-
iments at a single geographic point can be quite lengthy. Moreover, in rural
areas, obtaining LTE Internet measurements in places where people are likely to
use mobile broadband (e.g., at their homes or along local transportation corri-
dors) can be challenging [49], as places of interest are far apart (requiring more
resource intensive targeted measurement campaigns) and less densely populated
(prohibiting representative crowd-sourcing measurement efforts). It is in this con-
text that we ask the following research question: How can we infer the QoE for
video streaming applications over LTE at scale?

While there are few to no existing datasets that measure QoE in rural com-
munities, there are many public and proprietary datasets that report quality
of service (QoS) metrics, such as reference signal received power (RSRP) or
throughput. These metrics are typically reported independently and are mea-
sured over LTE networks in a wide range of locations throughout the U.S. and
globally [46,51–53,59,63]. We argue that the wealth of LTE-QoS data points
across the U.S. represents a key resource that can be leveraged to broadly assess
QoE: while measuring QoE at scale in LTE networks presents significant chal-
lenges, measuring QoS at scale in LTE networks has already been demonstrated
to be feasible. Hence, our goal, and key contribution, is a methodology that can
leverage low-cost QoS measurements to predict QoE.

To study the correlation between mobile QoS and QoE performance, a diverse
set of network measurements that are representative of a wide-range of conditions
is needed. As such, we undertook an extensive measurement campaign to collect
16 datasets comprised of network traces from the Southwestern U.S. for four
major telecom operators: AT&T, Sprint, T-Mobile and Verizon. Our datasets
vary along two primary axes: population density, and network load. To obtain
data from varied population densities, we collected LTE network measurements
within multiple rural and urban communities. For variable network load, we col-
lected LTE network traces from crowded events in urban locations that resulted
in atypically high volumes of network utilization [5] and, as a result, congestion.
We also collected traces from the same urban locations during typical operating
conditions as a baseline. Our datasets have broad spatial and temporal variabil-
ity, but can be classified into three primary categories: under-provisioned (rural),
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congested (congested urban), and well-provisioned (baseline urban).1 We lever-
age these varied datasets to demonstrate the generality of the inference method.
Based on our analysis, we show that predictive models can be used to infer video
QoE metrics using low-cost QoS measurements, so that QoE can be more easily
and scalably determined within difficult to assess regions.

Our key contributions and findings include:

– We collected sixteen measurement datasets2 from twelve locations through an
extensive ; ground measurement campaign within the Southwestern U.S. Our
data points are representative of three different network conditions: under-
provisioned (rural), congested urban and well-provisioned urban, and include
over 32 Million LTE packets. (Sect. 2);

– We develop and evaluate a comprehensive set of predictive models that infer
video QoE from low-cost QoS measurements such as RSRP and throughput.
Our analysis reveals that predictive models can infer video QoE with an
accuracy of at least 80% across all locations and network types (Sect. 3);

– We validate our models across multiple video types from a wide variety of
genres. Further, we demonstrate the utility of low-cost RSRP measurements
for inferring video QoE (Sect. 3).

2 Methodology and Datasets Overview

QoS metrics, such as received signal strength, latency, throughput, and packet
loss, capture the state of network connectivity. However, while QoS provides an
indication of network state, there can be a disconnect between QoS and user
experience. QoS network metrics are not Pareto-optimal; one element can get
better or worse without affecting the other. Consequently, estimation of user
experience requires the incorporation of multiple network measures, which may
be unique to time, space and application. Note that while the definition of QoE
can vary depending on the vantage point from which measurements are taken,
we only focus on application-level QoE. Our measurements are active end-user
device/passive user as defined in [61].

2.1 QoS and QoE Metrics

In this section, we describe the QoS and QoE metrics we collected (and esti-
mated) for this measurement study, as summarized in Table 1.

Quality of Service Metrics: We collect reference signal received power (RSRP)
and throughput synchronously on the same user equipment (UE). RSRP is
defined as the linear average over the power contributions (in Watts) of the

1 Through extensive analysis, we verified that our datasets are representative of the
network characteristics we anticipated: well-provisioned, congested, and/or under-
provisioned. We omit that analysis from this paper due to space constraints.

2 The subset of our dataset that we have permission to release is available at [4].
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Table 1. Overview of QoS and QoE metrics at each location, aggregated across avail-
able providers.

Type Metric Test Interval Number of Datapoints Tools

QoS RSRP 1 second 2160 Network Monitor
Throughput 1 second 2160 iPerf

QoE Video resolution 1 second 2160 Selenium, iframe API
Resolution switches 1 second 2160 Selenium, iframe API
Rebuffering events 1 second 2160 Selenium, iframe API

resource elements that carry cell-specific reference signals within the measure-
ment frequency bandwidth [2] and, as illustrated by [7], is widely accessible
through mobile operating systems. We record instantaneous RSRP readings from
the UEs every one second through the Network Monitor application [43]. We mea-
sure throughput by fetching a pre-specified 500 MB file from an AWS instance in
Virginia using iPerf over TCP to download the file. The large file size allows the
data traffic to fill the pipe and to minimize the effect of slow start. We log the
packet traces at the client during the iPerf tests in order to sample throughput
at 1 s intervals.

Quality of Experience Metrics: We focus on streaming video, currently
the most heavily used QoE-centric service in mobile networks [36]. Internet
video streaming services typically use Dynamic Adaptive Streaming over HTTP
(DASH) [60] to deliver a video stream. DASH divides each video into time inter-
vals known as segments or chunks, which are then encoded at multiple bit rates
and resolutions. To analyze video stream quality, we gather two QoE metrics:
resolution switches and rebuffering events. For resolution switches, we compute
the number of consecutive samples that had a different resolution as a percent-
age of the total number of samples collected during the video. We measure at
one-second granularity, which captures resolution switches that happen between
video chunks that are typically 4–5 s long [15]. Finally, a rebuffering event occurs
when video pauses while the application buffer waits to accumulate enough con-
tent to resume playback. We record the video state (rebuffering event or normal
playback) every second.

2.2 Measurement Suite

We run our measurement suite on Lenovo ThinkPad W550s laptops, each of
which are tethered to their own Motorola G7 Power (Android 9) via USB in
order to measure cellular performance. The cellular plans on all our cellular user
equipment (UE) have unlimited data and are hot-spot enabled to effectively
achieve the same level of performance as we would on the mobile device. We run
our measurement suite on laptops tethered to phones; this configuration gives us
the same application performance while facilitating ease of programming, data
extraction, and unification of application-level measurements.
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We choose YouTube as the streaming platform because of its popularity in
the U.S., capturing over 88% of the mobile market [62]. To collect video QoE
metrics, we run a 3-min clip of a Looney Tunes video [64], three times across
each of the four LTE providers at each location; we exclude from our results
the sessions that experienced playback errors during execution. We chose this
particular video due its mix of high and low action scenes, which result in vari-
able bitrates throughout the video (typically, high action scenes have a higher
bitrate than low action scenes). After testing multiple playback duration, we
observed that a 3-min window was adequate for the playback to reach steady
state, while long enough to capture rebuffering and/or resolution switches that
occur. To infer video QoE, we collect the input features (RSRP and throughput)
synchronously, on a separate device so as not to bias the video streaming mea-
surements. Synchronous measurements of throughput, RSRP and QoE metrics
are required to train learning algorithms to infer video QoE for a future time
instance. We use different servers for throughput and YouTube tests so that we
can obtain concurrent QoS and QoE measurements. Our setup reflects the real
world scenario where throughput test servers and YouTube servers are separate
while simultaneously affected by varying conditions from within the cellular net-
work [6]. In LTE, each bearer (connection from a UE) enjoys a relatively isolated
data tunnel before the egress from the packet gateway, located inside the core [1].
This reduces contention among UEs competing for resources at a single eNodeB,
and as a result we can accurately record QoS and QoE metrics on two separate
devices.

To execute this experiment, we first automate the loading and playback of
the YouTube video on the Chrome browser using Selenium [58]. The video reso-
lution is set to auto. Then we use YouTube’s iframe API [65] to capture playback
events reported by the video player. The API outputs a set of values that indi-
cate player state (not started, paused, playing, completed, buffering) using the
getPlayerState() function. The API also provides functions for accessing infor-
mation about play time and the remaining buffer size.

2.3 Description of Datasets

We collect 16 datasets from 12 locations across the Southwestern U.S. Eight of
the datasets were collected from rural locations that had sparse cellular deploy-
ment.

An additional eight datasets were collected from four urban locations. In each
urban location, we collect two datasets: one during a large event or gathering, in
which we expect cellular network congestion to occur (these datasets are marked
with Cong); and a second during typical operating conditions. We call the latter
dataset the baseline for that location (these datasets are marked with Base).
Hence, our 16 traces are broadly classified into three categories: rural, congested
urban, and baseline urban. The details of each dataset are summarized in Table 2.
The designation of each location as rural or urban is based on Census Bureau
data [57]. Through these measurement campaigns, we collect and analyze over
32.7 Million LTE packets. Note that the “Number of Datapoints” column shown
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in Table 1 indicates the QoS/QoE datapoints gathered by the application, while
the “# LTE Packets” column in Table 2 refers to the number of packets collected
in the trace files.

Table 2. Summary of datasets

Location Date # LTE Packets Type Carriers∗

Rural 1 May 28 2019 3.18 Million Rural V,A,T,S
Rural 2 May 29 2019 1.38 Million Rural V,T
Rural 3 May 28 2019 2.03 Million Rural V,A,T,S
Rural 4 May 30 2019 2.16 Million Rural V,A,T,S
Rural 5 May 30 2019 2.27 Million Rural V,A,T,S
Rural 6 May 31 2019 2.33 Million Rural V,A,T,S
Rural 7 May 31 2019 1.26 Million Rural V,T
Rural 8 Jun 01 2019 2.83 Million Rural V,A,T,S

Urban 1 Cong Sep 22 2019 2.25 Million Urban, Congested V,A,T,S
Urban 1 Base Sep 28 2019 1.92 Million Urban, Baseline V,A,T,S
Urban 2 Cong Sep 29 2019 2.51 Million Urban, Congested V,A,T,S
Urban 2 Base Sep 30 2019 1.97 Million Urban, Baseline V,A,T,S
Urban 3 Cong Sep 21 2019 2.65 Million Urban, Congested V,A,T,S
Urban 3 Base Sep 30 2019 2.13 Million Urban, Baseline V,A,T,S
Urban 4 Cong Sep 25 2019 2.18 Million Urban, Congested V,A,T,S
Urban 4 Base Sep 26 2019 2.08 Million Urban, Baseline V,A,T,S
∗This column lists mobile carriers in each data set (some areas had no coverage for particular
network operators). V: Verizon, A:AT&T, T:T-Mobile, S: Sprint.

2.4 Video QoE Measurement Scalability Challenges

Collection of ground-truth cellular network measurements, as we explore further
in Sect. 4, is a challenging task for multiple reasons. First, it requires physical
placement of measurement device at the location to be studied. While there
are many large, publicly accessible datasets that incorporate some QoS mea-
surements, QoE measurements, particularly in remote regions, are much more
difficult. Second, gathering ground truth data to assess video QoE requires an
active connection to stream a large encoded video file. This consumes a substan-
tial amount of bandwidth, computational power, memory, and battery, due to
the simultaneous use of LTE modems, display, CPU, and GPU [21] on the user
device. For instance, streaming applications consume memory to load the video
and require accelerated processing to decode and display the stream from the
video server. Unlike QoS metrics, which can often be collected in the background
through execution by back-end scripts, the high resource cost of QoE measure-
ments for the end user makes this data difficult to crowd-source. In Fig. 1 we
show the resource consumption during one hour of RSRP and throughput (QoS)
measurements, compared to one hour of video streaming (QoE), on our data
collection phones. As can be seen in the figure, the resources consumed by the
QoE measurements were significantly higher, both preventing background data
collection and more rapidly draining the device battery.
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a. CPU Load b. Memory utilization c. System temperature

Fig. 1. Device resource consumption during either RSRP and throughput measure-
ments only, or during video streaming.

Rural regions span large geographic areas with terrain that is often hard to
access. QoS data from public sources already struggles to cover these areas. In
particular, crowd-sourced datasets are data-rich in regions where there are higher
density populations. These regions tend to be either urban areas, or other areas
frequented by travelers (i.e. highways, national parks, etc.). Rural communities,
by contrast, with their lower population densities, are often under-represented in
crowd-sourced datasets. Yet it is exactly these regions where under-provisioned
networks typically exist and hence where data is urgently needed. In order to
effectively assess QoE in these remote areas, we need a method to improve QoE
measurement scalability. We address this challenge in the next section, where
we show how predictive models can use the less resource expensive QoS mea-
surements to infer QoE for streaming video on mobile broadband networks in a
variety of environments.

3 Inferring QoE Metrics for Video

As discussed in Sect. 2.4, the collection of QoS measurements is less resource
consumptive, and hence more scalable, than video QoE measurements. We now
describe our approach to infer QoE metrics for video streaming sessions using
low-cost QoS metrics.

3.1 Learning Problem

Our learning problem’s goal is to infer QoE metrics using a sequence of through-
put and RSRP (QoS metrics) data input. The objective is to build models with
appreciable performance that would work in a wide variety of network conditions
and different region types (e.g., rural and urban locations). These models could
be used to predict application QoE (in our case, video streaming) at a particular
location. We use supervised learning to train two different binary classifiers. The
first classifier infers whether the video’s state is stalled or normal; the second
infers whether there is any change in video resolution. Both models perform the
classification task every one second.
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Input: The learning model takes a sequence of RSRP and throughput values
as input. Both of these metrics are low-cost measurements and easily accessible.
Given how adaptive bitrate (ABR) video streaming players operate, the changes
in throughput and RSRP values have a delayed impact on QoE metrics. For
example, a decrease in available throughput will force the video streaming player
to use the buffered data before stalling.

As part of feature engineering, we had to determine how many RSRP and
throughput values to use as input for the learning model. Intuitively, the use of
longer sequences will improve accuracy. However, longer sequences also increases
the complexity of the learning model, which requires more training data to avoid
over-fitting. After varying n = 0 → 180 (total playback time of a session), we
found that using a sequence of three throughput/RSRP values enabled us to
strike a balance between model complexity and accuracy. A typical approach to
assessing throughput would be to log continuous measurements for a long dura-
tion of time and analyze the resulting mean/mode of the distribution. However,
our results (Sect. 3.3) indicate that we can infer the video quality from only a
3-s sample. This has the added benefit of reducing the resource utilization at the
client device, such as data consumption and battery drainage, while accurately
inferring the video stream quality.

Output: We train two separate binary classifiers to predict the video state and
change in resolution at the granularity of one second. Predicting QoE metrics
at such fine granularity enables opportunities to infer QoE with limited training
data. Given the input features, our models infer how likely it is for the video
stream to experience either a video stall or a resolution change in the next
instant.

Training Data: Our dataset consists of 32,596 data points. Each data point
has input values: a sequence of three RSRP and throughput values, as well
as two boolean labels: video state (playing or stalled) and resolution switches
(yes–resolution will change; no–resolution will not change). We collected this
dataset through our measurement campaign by conducting a total of 181 video
streaming sessions across multiple locations (Sect. 2.3). For each classifier, we
label the output training samples into either of the two classes: class 0 is when
playback is normal and devoid of any event (rebuffering or resolution switch),
and class 1 is when there is an event. We carried out the classification task by
splitting the entire dataset into a ratio of 70:30 training to test sets, as described
in Table 3. We split the overall training dataset into training and validation
sets (80:20). We chose the samples proportionate to the size of each dataset
category (rural, congested urban, and baseline urban). We present the models’
performance per location, where we train the models on specific locations and
then test on others not included in the training. We do not make any distinctions
between operators since an operator-agnostic evaluation is a more comprehensive
reflection of coverage and QoE at a particular location.
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Table 3. Breakdown of training and test set samples for both classifiers.

Training Set Test Set
Classifier Type Target Metric Class 0 Class 1 Class 0 Class 1

Classifier 1 Rebuffering Event 22,175 642 9,504 275
Classifier 2 Resolution Switching 22,490 327 9,639 140

3.2 Learning Algorithm

We now present the learning models we used for the learning problem, our model
training approach, and the method for addressing the inherent class-imbalance.

Learning Models: We trained a wide range of off-the-shelf classifiers for this
learning problem in order to identify the classifier that strikes the best bal-
ance between performance (precision, recall, etc.) and generalizability. First, we
trained simpler classifiers, such as gradient boosting [29], bagging [13], random
forest [14], ARIMA [12], AdaBoost [30], etc. These classifiers offer better general-
izability at the cost of performance. We also trained neural-network (NN)-based
classifiers, such as a convolutional neural network (CNN) [41] and recurrent neu-
ral network (RNN) [37] (in particular, LSTMs [35] and GRUs [23]), that offer
higher accuracy but require considerable training data to avoid over-fitting.

Setup: We ran all the classifiers on a local machine that runs Ubuntu 18.04, pow-
ered by a 4-core i7-7700 CPU (3.60 GHz) with 64,GB RAM and 8 GB NVIDIA
RTX 2080 GPU. We implemented the simpler classifiers using the scikit-learn
0.21 [56] library of Python, and NN-based models using Keras with Tensorflow
backend [24]. We used four fully-connected layers for the NN-based classifiers.
For RNN-LSTM-Focal (see Table 4), the network utilized 64, 32, and then 16
hidden neurons, in addition to a final output layer with hyperbolic tangent activa-
tion function. We used Grid Search [25] to determine the ideal hyper-parameter
configuration for each neural network. To avoid over-fitting, we use a dropout
of 0.4 while training with the Adam gradient descent optimizer [39]. We ran the
RNN-LSTM model for 120 iterations with a batch size of 64.

Class-Imbalance Problem: As rebuffering and changes in the resolution are
rare, most of our data points are normal, i.e., they do not have any rebuffering
or resolution switching events. As a result, our dataset has the class-imbalance
problem, typical for most anomaly detection problems. To address this issue, we
applied the sampling technique SMOTE [19] to balance the classes artificially.
However, such an approach reduces the number of data points that we can use
for training the classifier, which in turn affects the accuracy. With SMOTE, we
observed no improvements in accuracy with simpler learning models (e.g., SVM,
random forest, etc.), and lower accuracy for NN-based classifiers. Therefore, for
the NN-based classifiers, we adapted a new technique that has proven to increase
classification accuracy in datasets that suffer from the class-imbalance issue for
the object detection problem [42]. This technique addresses the class-imbalance
problem by reshaping the standard cross entropy loss in such a way that it lowers
the weights for the majority class [42]. It also introduces the concept of focal loss
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that prevents the majority class from overwhelming the classifier during training.
The focal loss can be represented as:

FL(pj) = α(1 − pj)γ log(pj) (1)

Here, FL is the focal loss function, and pj is the softmax probability of the jth

class for a particular observation. α and γ are two regularizing parameters. This
loss function adds more importance when the network predicts a minority sample
as opposed to the overly represented sample—making it ideal for performing
classification on an imbalanced dataset.

3.3 Results

We now present the performance of the different classifiers we used for this learn-
ing problem. For those that performed well, we also quantify their performance
across different locations and video types. Finally, we quantify the contribution
of an LTE-specific QoS metric, RSRP, in improving the accuracy of our learning
models.

Table 4. Performance metrics of the classification models.

Rebuffering Events Resolution Switching
Models Accuracy Precision Recall Accuracy Precision Recall

Boosting 0.87 0.88 0.88 0.84 0.85 0.84
Bagging 0.80 0.82 0.82 0.71 0.73 0.72
Random Forest 0.85 0.87 0.86 0.79 0.80 0.80
ARIMA 0.81 0.81 0.81 0.77 0.78 0.78
Decision Trees 0.80 0.80 0.98 0.75 0.75 0.75
Extra Randomized Tree 0.77 0.78 0.77 0.72 0.73 0.72
AdaBoost 0.62 0.60 0.63 0.51 0.55 0.53
Support Vector Machine 0.72 0.72 0.73 0.70 0.71 0.70
K-nearest neighbors 0.60 0.56 0.62 0.58 0.57 0.49
CNN 0.72 0.73 0.73 0.68 0.69 0.69
CNN - Focal 0.84 0.85 0.84 0.81 0.81 0.81
RNN - LSTM 0.82 0.83 0.83 0.80 0.79 0.80
RNN - LSTM - Focal 0.89 0.89 0.89 0.86 0.86 0.87
RNN - GRU 0.82 0.82 0.84 0.80 0.82 0.82
RNN - GRU - Focal 0.86 0.86 0.85 0.83 0.84 0.84

Performance: We analyze the performance of learning models in terms of accu-
racy, precision, recall, and training time. Table 4 summarizes the performance of
all classifiers we explored. We observe that the accuracy of the rebuffering-event
classifier is better than the resolution-switching one, as depicted in Fig. 2. This
difference is attributable to the smaller number of anomalous data points (resolu-
tion switches) in the data (see Table 3). In terms of accuracy, RNN-LSTM-Focal
performs best. This is expected as this model makes the best use of the sequence
of throughput and RSRP values and is best suited to handle the class imbal-
ance problem. On the other hand, though RNN-LSTM-Focal has the highest
accuracy, the accuracy gains are marginal when compared to simpler learning
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models, especially Boosting. Given these marginal gains and the complexity of
training NN-based classifiers (5 vs. 214 s), we use the Boosting classifier to char-
acterize the performance across different network and video types.

a. Rebuffering events b. Resolution switching

Fig. 2. Performance of Boosting across different locations.

Generalizability: We now quantify the generalizability of the Boosting classi-
fier. First, we show how its performance varies across different network types.
Figure 2 depicts the performance of inferring video rebuffering using Boosting
at each location. We observe that the performance differences across different
network types are marginal (<2% deviation between categories). We saw similar
trends for the Boosting-based classifier when inferring resolution switching.

Our initial measurements only collected the QoE metrics for the Looney
Tunes video. To verify that our results generalize for other video types, we col-
lected the QoS/QoE data for 108 additional video streaming sessions (a total
of 48,825 new data points) at our research facility (baseline-urban). We selected
18 different videos from seven genres: action (trailers/movie clips), music videos,
sports, online learning content, news, documentary, and animation (including the
original Looney Tunes video) [16]. We selected top trending videos for each genre.
Given that the videos were of varying duration, we capped each measurement to
a maximum of ten minutes. We streamed each video over three different telecom
providers (AT&T, T-Mobile, and Verizon); we were not able to obtain Sprint
measurements because of closures of Sprint retail outlets due to the COVID-19
pandemic. Figure 3 shows the performance of Boosting for both video rebuffering
and resolution switching. We observe marginal variations (<1.5% and <3% devi-
ation for rebuffering and resolution switching, respectively) in accuracy across
different video genres, implying that our learning model generalizes reasonably
well to different video types. Note that we do not claim that these results gen-
eralize for other video players (e.g., Hulu, Netflix), client platforms or devices;
we plan to quantify the performance of our learning models for other platforms,
devices and non-YouTube videos in the future. Finally, we do not claim to have
developed models that generalize across other locations or network conditions –
rather we use this study to demonstrate the feasibility of inferring video QoE at
scale within a limited, but diverse, dataset.
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a. Rebuffering events b. Resolution switching

Fig. 3. Performance of Boosting across different video genres.

Fig. 4. Inferring video rebuffering using Boosting with and without RSRP as an input
feature.

Ablation Study: To better understand the impact of an LTE-specific metric
(i.e., RSRP) in inferring QoE metrics, we performed an ablation study. Figure 4
compares the accuracy of the Boosting classifier in inferring rebuffer events with
and without the RSRP values. We observe that the average increase in accuracy,
with RSRP as an input, is 9.28%, while the maximum gain is 18.61%. This result
could be attributed to the exposition of the relationship, by the non-linear mod-
els, between RSRP and throughput to identify the target metrics at any given
location successfully. This study highlights the importance of LTE-specific RSRP
measurements in accurate prediction of rebuffering and resolution switching.

4 Related Work

Prior work most similar to ours, which focuses on quantifying the user experience,
typically infers the QoE of video streaming from QoS of fixed broadband net-
works [22,31,38]. In contrast, our work focuses on mobile broadband, which often
exhibits a wide variation in performance over time and space. Some past work
on mobile broadband, such as [3,11,20,54], has examined metrics solely from
the application and network layers. [15,26,33,40,44,45] require direct access to
(encrypted or unencrypted) network traffic to infer video QoE. In contrast, our
approach is independent of network traces and incorporates low-cost signal and
throughput measurements for rapid QoE prediction. Few publicly available QoS
datasets include synchronous RSRP measurements. [17,48,63] analyze network
traces that contain performance indicators captured during streaming sessions,
and experiment metadata from mobile broadband networks. All of these datasets,
however, have limited types of datapoints (primarily from dense, urban loca-
tions); the datasets have minimal to no measurements from networks that are
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under-provisioned or located in remote regions. We believe it is challenging to uti-
lize existing prior datasets (from primarily urban scenarios) to evaluate diverse
network conditions in the context of the measurements examined in this work,
either due to non-overlapping and non-scalable nature of prior measurements
or lack of a comprehensive and representative dataset. Further, the accuracy of
our models, given the inexpensive measurements, indicates the feasibility and
scalability of our approach.

Prior work that has focused on charting the relationship between RSRP and
QoE has important limitations. For instance, [10] presents a mapping of RSRP
and video QoE that is derived using only simulated experiments. The authors
of [47] explore the effect of radio link quality, such as RSRP, on streaming video
QoE. The presented results are limited in scope as their setup streams a custom
video hosted on their own server; by omitting evaluation of a popular streaming
service, such as YouTube or Netflix, the work does not accurately capture the
application and network performance experienced by actual users. [9] undertakes
a study similar to ours, however, with a modest dataset that is limited to a small
portion of a local transit route and is thus difficult to generalize.

5 Conclusion

Through an extensive measurement campaign, we collect 16 datasets with widely
varying performance profiles. Our dataset includes representation of: i) the vari-
ability of mobile broadband performance as a consequence of either sparse deploy-
ments or network congestion, and ii) the communities most likely to be dependent
on mobile broadband (rural areas). Through our analysis, we highlight the chal-
lenges of quantifying QoE metrics at scale, particularly in remote locations. To
address this challenge, we develop learning models that use low-cost and easily
accessible QoS data (LTE-specific RSRP and throughput) to predict QoE metrics.
Our models can be generalized to video content from different genres, as well as to
other locations that share network characteristics similar to those of our dataset.
The observed efficacy of the models indicates that video QoE can be more easily
and scalably determined within difficult to assess regions, using low-cost QoS mea-
surements. For instance, given the increased load on video streaming platforms
during COVID-19 [50], cellular operators could employ our approach to detect
sectors with possible bottlenecks without having to rely on user feedback/com-
plaints, particularly in remote locations. This has the potential to lead to faster
turnaround times for network troubleshooting [55], and therefore may lower out-
age periods for users heavily dependent on video streaming.
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47. Minovski, D., Åhlund, C., Mitra, K., Johansson, P.: Analysis and estimation of
video QoE in wireless cellular networks using machine learning. In: 11th IEEE
International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6
(2019)

48. MONROE: MONROE Video Dataset (2018). https://doi.org/10.5281/zenodo.
1230448

49. Nekrasov, M., et al.: Evaluating LTE coverage and quality from an unmanned
aircraft system. In: Proceedings of the 16th IEEE International Conference on
Mobile Ad-Hoc and Smart Systems (2019)

50. Nielsen Insights: Streaming Consumption Rises in U.S. Markets With Early
Stay-at-home Orders During COVID-19 (2020). https://www.nielsen.com/us/
en/insights/article/2020/streaming-consumption-rises-in-u-s-markets-with-early-
stay-at-home-orders-during-covid-19/

51. Ookla: Mobile Speedtest Intelligence Data (2019). https://www.speedtest.net/
reports/united-states/

52. Open Signal: Open Signal 3G and 4G LTE Cell Coverage Map (2016). http://
opensignal.com

53. OpenCelliD: The World’s Largest Open Database of Cell Towers (2020). https://
opencellid.org/

http://arxiv.org/abs/1708.02002
https://github.com/caarmen/network-monitor
https://doi.org/10.5281/zenodo.1230448
https://doi.org/10.5281/zenodo.1230448
https://www.nielsen.com/us/en/insights/article/2020/streaming-consumption-rises-in-u-s-markets-with-early-stay-at-home-orders-during-covid-19/
https://www.nielsen.com/us/en/insights/article/2020/streaming-consumption-rises-in-u-s-markets-with-early-stay-at-home-orders-during-covid-19/
https://www.nielsen.com/us/en/insights/article/2020/streaming-consumption-rises-in-u-s-markets-with-early-stay-at-home-orders-during-covid-19/
https://www.speedtest.net/reports/united-states/
https://www.speedtest.net/reports/united-states/
http://opensignal.com
http://opensignal.com
https://opencellid.org/
https://opencellid.org/


Too Late for Playback 157

54. Orsolic, I., Pevec, D., Suznjevic, M., Skorin-Kapov, L.: A machine learning app-
roach to classifying YouTube QoE based on encrypted network traffic. Multimedia
Tools Appl. 76(21), 22267–22301 (2017)

55. Paul, U., Ermakov, A., Nekrasov, M., Adarsh, V., Belding, E.: #Outage: detecting
power and communication outages from social networks. In: Proceedings of The
Web Conference, pp. 1819–1829. WWW (2020)

56. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Machine Learn.
Res. 12, 2825–2830 (2011)

57. Ratcliffe, M., Burd, C., Holder, K., Fields, A.: Defining rural at the US census
bureau. Am. Community Surv. Geogr. Brief 1(8) (2016)

58. Selenium: The Selenium Browser Automation Project. https://www.selenium.dev/
documentation/en/

59. Skyhook: Skyhook Coverage Area (2019). https://www.skyhook.com/coverage-
map

60. Sodagar, I.: The MPEG-DASH standard for multimedia streaming over the inter-
net. IEEE Multimedia 18(4), 62–67 (2011)

61. Sousa, I., Queluz, M.P., Rodrigues, A.: A survey on QoE-oriented wireless resources
scheduling. J. Netw. Comput. Appl. 158, 102594 (2020)

62. Statista: Most Popular Video Streaming Services in the US (2019). https://
www.statista.com/statistics/910895/us-most-popular-video-streaming-services-
by-reach/

63. Wamser, F., Wehner, N., Seufert, M., Casas, P., Tran-Gia, P.: YouTube QoE mon-
itoring with YoMoApp: a web-based data interface for researchers. In: Network
Traffic Measurement and Analysis Conference, pp. 1–2. IEEE (2018)

64. YouTube: Looney Tunes Summer Vacation! WB Kids (2018). https://www.
youtube.com/watch?v=8fKNkiJl Ro

65. YouTube: YouTube Player API Reference for iframe Embeds (2019). https://
developers.google.com/youtube/iframe api reference

https://www.selenium.dev/documentation/en/
https://www.selenium.dev/documentation/en/
https://www.skyhook.com/coverage-map
https://www.skyhook.com/coverage-map
https://www.statista.com/statistics/910895/us-most-popular-video-streaming-services-by-reach/
https://www.statista.com/statistics/910895/us-most-popular-video-streaming-services-by-reach/
https://www.statista.com/statistics/910895/us-most-popular-video-streaming-services-by-reach/
https://www.youtube.com/watch?v=8fKNkiJl_Ro
https://www.youtube.com/watch?v=8fKNkiJl_Ro
https://developers.google.com/youtube/iframe_api_reference
https://developers.google.com/youtube/iframe_api_reference

	Too Late for Playback: Estimation of Video Stream Quality in Rural and Urban Contexts
	1 Introduction
	2 Methodology and Datasets Overview
	2.1 QoS and QoE Metrics
	2.2 Measurement Suite
	2.3 Description of Datasets
	2.4 Video QoE Measurement Scalability Challenges

	3 Inferring QoE Metrics for Video
	3.1 Learning Problem
	3.2 Learning Algorithm
	3.3 Results

	4 Related Work
	5 Conclusion
	References




