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Abstract

Autonomous and Predictive Systems to Enhance
the Performance of Resilient Networks

by

Vivek Adarsh

Over half the planet’s population currently has access to the Internet in some

form. Consequently, Internet usage has increased exponentially on mobile and fixed

networks. In particular, video traffic now accounts for 80% of all Internet traffic,

largely thanks to the rise of streaming platforms and video content from social me-

dia. With this tremendous growth, it becomes challenging to maintain consistent

and high-quality service to all connected users. This is particularly true in the case

of video sessions, which demand relatively consistent, high volume bandwidth to

maintain high-quality sessions for end-users.

However, the presence of connectivity does not necessarily equate to usable ser-

vice. Even in well-provisioned deployments, network resiliency can be an issue.

Our own assessment of multiple networks across the US indicates that there is a

wide disparity between reported coverage and actual usability. Numerous studies,

including ours, indicate that LTE penetration in rural areas is far less than what

is typically reported by providers and much less prevalent and lower quality than

that in urban areas. Similarly, for fixed broadband, studies have observed highly

variable median speeds across the globe, including South America, the Middle East,

and Africa. Within the US itself, broadband speeds vary considerably as well. Fi-

nally, networks have to support multitudes of end-user devices (e.g., mobile phones,

laptops, desktops) and a wide variety of application types, many with challenging

and strict delivery requirements. As a result, ensuring high-quality, low-variability

xii



service quality under variable conditions is exceptionally challenging.

This dissertation is aimed at tackling this challenge. We assess how existing tech-

nologies and standards function in complex environments: lack of deterministic

pathways for Internet connectivity, presence of congestion and other resource con-

straints, and temporal or spatial variability in network performance. Based on our

extensive analysis of real-world conditions, we produce cellular and broadband sys-

tems designed to bridge the technological gap for end-users in challenging network

conditions.
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Chapter 1

Introduction

Accessibility to the Internet has seen hypergrowth in the past decade, both on mobile

and fixed networks. Unsurprisingly, over half the planet’s population has access to

the Internet in some form, shape, or manner[1]. However, within an expanding user

base, a significant trend has emerged. Internet video traffic has grown fourfold in

the past half a decade. By the end of 2022, Internet video will be 82% of all consumer

Internet traffic [2], largely due to the rise of streaming platforms and video content

from social media. To achieve necessary performance and resiliency, a planned and

collaborative suite of solutions must address challenges across the networking stack

to keep pace with global connectivity demand and provide a seamless user experi-

ence.

With this tremendous growth in adoption, it becomes challenging to maintain

consistent and high-quality service to all connected users. Connectivity may not neces-

sarily equate to usable service. Since the introduction of the Connecting America: The

National Broadband Plan in 2010, increased efforts have been made to bring connec-

tivity to areas where it previously was not [3]. However, even in well-provisioned

deployments, network resiliency could be an issue. Our studies indicate a wide dis-
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Figure 1.1: Mobile-cellular, fixed-broadband and active-mobile broadband tele-
phone subscriptions per 100 inhabitants, 2020 [Source: ITU Facts & Figures 2020]

parity between reported coverage and actual usability [4, 5]. Figure 1.1 shows the

number of subscriptions for every 100 people globally. We learn that combining

North and South America, the ratio for cellular subscriptions exceeds 1. Stated oth-

erwise, it means individuals may hold multiple cellular subscriptions. This figure

indicates that the number of subscriptions is artificially bolstered by people carry-

ing multiple SIM cards to obtain service on multiple service providers depending on

time and place. Further, we observe that networks serving rural areas and develop-

ing regions continue to significantly lag behind the rest of the world [6]. Networks

that do offer coverage in such resource-limited areas are often poor-quality and offer

spotty, unpredictable coverage[7].

To provide appreciable service quality, it is imperative first to assess the existing

service quality and network performance to optimize and strategically inform future

resilient networks’ design. Mobile broadband standards such as LTE and 5G are

frequently used to connect the edges of access networks to the Internet. Assessing

such networks in terms of coverage and performance remains a significant challenge.

Service providers frequently use generous propagation models to assess coverage,

often overstating availability and not accounting for quality and usability[8, 9, 10].

Availability of network connectivity does not typically guarantee the lack of fre-
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quent disruptions either. In rural locations, for example, under-provisioned net-

works face frequent outages and provide a service quality that can fall far short of

what users paid for[4]. In addition, natural disasters can cripple communication

infrastructure and severely damage well-provisioned networks when most needed.

After Hurricane Harvey, 4.1% of cell sites across the coasts of Texas and Louisiana

were inoperable [11]. Hurricane Irma disrupted 27% of towers in affected areas of

Florida [12] and downed 55% of Puerto Rico’s cellular towers [12]. Hurricane Maria

disabled 95% of cellular sites in Puerto Rico and 76% in the Virgin Islands [13]. The

impact of these disasters sometimes lasts months or years. Infrastructure damage

to power and communication networks in Puerto Rico took more than 11 months to

restore [13]. Additionally, in a well-provisioned region, sudden escalation in traffic

demand from user equipment (UE) can occur during large gatherings (e.g., street

festivals, protests). Prior work has demonstrated that even in areas that cellular

providers claim are well-covered, persistent over-usage due to insufficient capacity

can exist [14]. To remedy this disparity between reported coverage and actual usabil-

ity, individual users, watchdog groups, and government agencies need tools to verify

whether a network serves customers adequately. Mobile network operators (MNOs)

already use emerging technologies, such as Unmanned Aerial Systems (UAS), to

assess network damage and performance. The work in this dissertation further ex-

pands capabilities by proposing systems of automated network quality assessment

and systems assessing network congestion while maintaining scalability.

While instantaneous examination of service quality is necessary, it is not adequate

to ensure a seamless user experience for subscribers. Network providers require deep

inspection into the end-user experiences, typically a function of the application layer

performance, to allocate appropriate resources for smoothly rendering application-

specific content on multitudes of user devices. This examination of Quality of Ex-
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perience (QoE) is resource-intensive, requires observability into active monitoring

devices (unlike passive subscribers’ devices), and has scalability limitations. To that

end, we need accurate predictive models to improve device-agnostic user experience

– integral to the design of future resilient networks.

In this thesis, we focus on measurements and characterization of real-world networks

and subsequent system designs based on our predictive analysis to improve connectivity

in the measured contexts.
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1.1 Thesis Statement

This dissertation shows that:

Typically, network conditions and service quality in mobile and fixed networks vary

non-uniformly across space and time. To achieve global connectivity and normalize the

end-user experience, we must empirically assess these networks and use those findings to

build automated systems that inform the design of resilient networks.

Figure 1.2: Dissertation overview.

We measure and analyze multiple real-world, resource-limited networks with

temporally and spatially varying performance and design new predictive systems

to mitigate the challenges we observe.

The structure of this dissertation is summarized in Figure 1.2 and is organized as

follows. The dissertation is divided into two parts. We first measure and characterize

network topologies in challenging environments. We leverage our findings to inform

system designs to predict network performance at scale.
5
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1.2 Key Contributions

In this section, we discuss our broad contributions and their implications based

on the outline shown in Figure 1.2.

1.2.1 Measurements and Characterization

We perform measurement and analysis on two access technologies: (i) mobile

broadband and (ii) fixed broadband.

• Mobile broadband: We collect cellular network measurements in order to char-

acterize performance and identify under-performing aspects of the infrastruc-

ture under study.

Contributions: In our first dataset, we evaluate the accuracy of simple, lightweight

spectrum sensing devices for LTE RSRP measurements compared to that of ex-

pensive solutions. We then assess the gradation within which similar RSRP

measurements are obtained from complex equipment currently employed. To

do so, we initiate a wardriving campaign to collect ground and air LTE signal

strength (RSRP) measurements in two regions in New Mexico over a period of

five days. We employ six unique RF sensing methodologies in our analysis.

These ground measurements are uniquely helpful in contrasting the efficacy of

each measurement technique. We then show that these devices can be mounted

on Unmanned Aircraft Systems (UAS) to more rapidly and easily measure cov-

erage across wider geographic regions. Our results show that the low-cost

aerial measurement techniques have 72% accuracy relative to the ground read-

ings of user equipment and fall within one quality gradation 98% of the time.

The dataset above was also used to quantitatively examine the LTE coverage
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disagreement among existing datasets collected using different methodologies.

We find that existing datasets display the most divergence when compared with

each other in rural and tribal areas.

Our second dataset focuses on the comprehensive assessment of network per-

formance of various LTE service providers. The dataset consists of QoS and

QoE datapoints that are spatially and temporally varying. We collect 16 datasets

from 12 locations across the Southwestern U.S. Eight of those datasets are col-

lected from rural locations with sparse cellular deployment. Six of the eight

locations are under American Indian Tribal sovereignty jurisdiction, while two

are from non-tribal rural regions. In addition, we collect another eight datasets

from four urban locations in California. For each urban location, we collect two

datasets: one during a large event or gathering, in which we expect cellular

network congestion to occur, and a second during typical operating conditions.

Hence, our traces are broadly classified into three categories: rural and tribal,

congested urban, and baseline urban. Our analysis confirms that the perfor-

mance of LTE networks in tribal and rural areas (that we study) is typically

worse than even heavily congested urban networks. More specifically, in the

regions that we study, LTE networks in under-provisioned (tribal/rural) areas

have 9⇥ poorer video streaming quality, 10⇥ higher video start-up delay. They

undergo more than 10⇥ the number of resolution switches and lead to more

than 2⇥ slower Web browsing experience compared to urban deployments.

Despite identical LTE carrier subscription plans, we show that throughput and

latency are 11⇥ and 3⇥ worse in tribal and rural locations.

• Fixed broadband: We investigate traces collected in broadband networks to

examine topology characteristics and transport protocols’ performance.
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Contributions: In order to understand the path characteristics of the Multipath

TCP (MPTCP) protocol, we gather network traces from Web downloads with

varying object sizes. The study’s goal was to examine the performance of the

default MPTCP scheduler. For this set of experiments, we deploy two MPTCP-

enabled machines on a popular cloud service provider. Our testbed consists

of a server located in Virginia and a client that is situated in California. The

client communicates with the server over the Internet through two different

wired interfaces, each connected to a different subnet to maintain isolation of

routes. We collect network traces to compute throughput, loss rate, and latency

measurements, along with page load times of the websites. This study shows

how heterogeneous paths can adversely affect MPTCP performance, especially

when one path is lossy.

1.2.2 System Design and Predictive Analysis

We design novel systems capable of accurately inferring network and application

performance for providers to improve the Quality of Service (QoS) and Quality of

Experience (QoE) for end-users.

• Mobile broadband: Through our measurement campaigns, we find that de-

tecting overload and congestion is challenging without embedding active mon-

itoring devices into the cellular network. Ideally, public entities should be able

to assess the overload, congestion, and operational status/usability of cellular

base stations. Further, they should be able to accomplish this without relying

on the cooperation of a cellular provider. To address this critical need, we pro-

pose a novel solution to infer overload and congestion in LTE networks based

on messages broadcast by the eNodeB. Further, estimation of end-user experi-
8



Introduction Chapter 1

ence as a function of network utilization (overload/congestion) and deployment

sparseness is difficult to achieve, resource-intensive, and requires unscalable

approaches. To that end, we design novel, scalable systems to estimate user

experience.

Contributions: To study network overload and congestion using only passive

measurements, we develop Lumos, a data analysis platform capable of quanti-

fying overload in eNodeBs; and Edain, a networking monitoring suite that auto-

mates the collection of Quality of Service (QoS) and Quality of Experience (QoE)

metrics. Through the analysis of multiple message types, we draw clear com-

parisons between instances of high network utilization and typical operating

conditions for several eNodeBs (LTE base stations). Further, we evaluate per-

formance differences incurred from overload-driven congestion through QoS

and QoE metrics assessment. Our results indicate that eNodeBs demonstrate

measurable performance differences indicative of overload conditions and net-

work congestion.

Given that cellular deployment is often guided by economic demand, concen-

trating deployment in urban areas and leaving economically marginalized and

sparsely populated regions under-served, the wireless nature of LTE networks

necessitates that QoE be evaluated in multiple locations per base station as fac-

tors such as signal availability may have significant spatial variation. Based on

our observations that quality of service (QoS) metrics are less time and resource-

intensive to collect, we investigate how QoS can be used to infer QoE in LTE

networks. Using an extensive, novel dataset representing a variety of network

conditions, we build several state-of-the-art predictive models for scalable video

QoE inference. We demonstrate that our models can accurately predict rebuffer-
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ing events and resolution switching more than 80% of the time, despite the

dataset exhibiting vastly different QoS and QoE profiles for various network

conditions we study. We also illustrate that our classifiers have a high degree

of generalizability across multiple videos from a vast array of genres. Finally,

through an ablation study, we highlight the importance of low-cost QoS mea-

surements such as reference signal received power (RSRP) and throughput in

QoE inference.

• Fixed broadband: Our analysis of applications on fixed broadband and data

center traffic enables us to identify unique challenges facing such networks and

inform the design of scalable systems using domain-specific accelerators at the

network’s edge.

Contributions: The growth of edge-computing systems is driven by solutions

and applications requiring high-performance and low-latency video conferenc-

ing and streaming services. The adoption of serverless frameworks to process

applications at the edge has increased significantly. However, provisioning for

additional computing needs on a transient basis for sudden workload spikes,

or transient elasticity, is non-trivial. Scaling serverless functions at the edge

poses critical challenges. Service-level agreement (SLA) violations are typically

frequent in such scenarios. Since SLA violations carry severe penalties, one

common way to eliminate violations is to over-allocate resources preemptively.

This solution leads to the under-utilization of expensive resources. Meanwhile,

SmartNICs (smart network interface cards) have gained popularity to offload

various network functions and provide real-time, line-rate computing at scale.

Our study proposes AKIDA, a new architecture that strategically harvests the

untapped compute capacity of the SmartNICs to offload transient workload
10
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spikes, thereby reducing the SLA violations. Usage of this untapped compute

capacity is more favorable than adding and deploying additional servers, as

SmartNICs are economically and operationally more desirable. AKIDA is a

low-cost and scalable platform that orchestrates seamless offloading of server-

less workloads to the SmartNICs at the network edge, eliminating the need for

pre-allocating expensive compute power and over-utilization of host servers.

Our system evaluation shows that SLA violations can be reduced by 20% for

certain workloads.

1.3 Broader Impacts

In addition to peer-reviewed publications and presentations to academics, this

work was impactful to the larger community.

• We have partnered with multiple Native American communities to assist in the

mapping, evaluating, and deploying LTE and TVWS technologies. We part-

nered with Southern California Tribal Digital Village [15], New Mexico Santa

Clara Pueblo, and New Mexico Ohkay Owingeh tribe to develop technology in

line with the needs of these communities.

• We provided outreach and training at Santa Clara Pueblo, Ohkay Owingeh, and

Northern New Mexico Community College, where we taught local children and

adults basic principles of internet performance measurements as well as LTE

space measurement basics. Further, we held several one-on-one discussions of

our work with partners and community members.

• This work has generated considerable interest in the industry. In 2020, we

gave an invited presentation to the NetInfra team at Google. Since 2021, our
11
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investigation of video streaming applications in rural areas [5] led an industry

partner, ViaSat, to sponsor the continuation of a similar project at our research

facility that supports a full-time doctoral student.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. In Chapter 2 we

present the background of our research, including a description of our field studies

and challenges encountered during measurement campaigns. In Chapter 3 – Chap-

ter 5 we characterize cellular network performance and user behaviors in various

settings. In Chapter 6 includes an in-depth look at the performance of the Multipath

TCP protocol evaluated under real-world conditions. Chapter 7 provides the motiva-

tion and philosophy of our system design for Chapter 8 – Chapter 11. Specifically,

in Chapter 8 – Chapter 9 we discuss the development of two robust and scalable

systems we built to infer overload and congestion in cellular networks. Chapter 10

presents our design of network models to easily accurately predict user experience

for video streaming applications from inexpensive QoS measurements. Next, we

demonstrate the efficacy of AKIDA, a serverless system designed to process applica-

tions in-network using SmartNICs, in Chapter 11. Lastly, Chapter 12 discusses our

findings and concludes this dissertation.
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Chapter 2

Research Background

Accessible and usable Internet service is crucial as a fundamental human right [16].

Globally, Internet access has become increasingly available through mobile broad-

band LTE cellular networks [17, 18]. Although more than 4 billion users world-

wide benefit from Internet access provided by LTE, economic opportunism often

drives LTE and other broadband technology expansion, concentrating deployment

in densely populated urban centers. Economically marginalized and sparsely pop-

ulated rural areas often remain under-served [19, 20, 21], expanding the digital di-

vide between those with usable Internet access and those without [22, 23]. In the

United States, for example, rural tribal regions suffer from the poorest LTE cover-

age [24]. When crises occur, like the worldwide COVID-19 pandemic, the digital

divide heightens inequalities for rural communities [25, 26]. As education, work,

and social interactions transition to online environments, those with poor broadband

access have no way to participate [27].

To bridge the divide, communities require accurate assessments of existing access

and usability gaps. Government entities or third-party crowd-sourced data firms fre-

quently quantify LTE mobile broadband access using coverage maps that represent
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signal availability as binary. In the United States, the Federal Communications Com-

mission (FCC) releases data based on self-reporting by Mobile Network Operators

(MNOs) [28]. This data influences incentive programs for cellular deployment in ru-

ral regions [29, 30]. However, due to the reliance on self-reported data and the binary

nature of coverage reports, researchers repeatedly cast doubts on the data’s accu-

racy [31, 10, 32]. In addition to government sources, third-party data firms [33, 34]

gather more nuanced coverage estimation, including signal strength and throughput

measurements. Due to the crowd-sourced nature of these data sets, data is primar-

ily available for urban centers and transit corridors and is, consequently, sparse in

rural and tribal regions. New advances in coverage mapping using automated sen-

sors, including Unmanned Aircraft Systems, show promise as a means of effectively

mapping rural areas [35].

In this dissertation, we study the usage and performance of various networking

solutions across space and time. We leverage our trace captures and application-

related performance metrics to identify network usage and challenges related to user

experience and design systems based on our findings. The remainder of this chapter

discusses the background of our fieldwork and a brief description of the characteris-

tics and challenges of working in diverse environments.

2.1 Field Work

We conduct fieldwork in multiple locations around the US, representing varying

cellular deployment and network usage levels. We first collect measurements from

the United States based LTE and Wi-Fi networks. To study the variation in Multipath

TCP (MPTCP) scheduling decisions made over different wireless access technologies,

we measure packet round-trip times (RTTs) for the Tranco top 10K websites [36] over

14
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different interfaces: Wi-Fi and LTE. RTT is a crucial parameter in network perfor-

mance; the default MPTCP scheduler makes path selection decisions that rely heavily

on the RTT of each path. Different interfaces can produce vastly different RTTs for the

same web servers, partly due to server replication within CDNs. Next, server reach-

ability is critical in assessing whether MPTCP can be implemented in a broad range

of scenarios. Additionally, it helps us understand the importance of selecting the

primary interface. As the first step in our study, we perform DNS resolution of the

Tranco top 10K websites [36] on each of the available interfaces (Wi-Fi and LTE) on the

monitoring device using the tethered phone. Web servers can resolve to different IPs

over different interfaces. That is because resolution depends on how the ISP routes

the request to return the address of the desired content delivery network (CDN). For

instance, cellular operators will likely embed web servers and CDNs within their

core network to provide faster response times to user web requests. Omitting web-

sites that do not resolve, the resulting sample size after DNS resolution is 9756 and

9638 for Wi-Fi and LTE, respectively, with an overlap of 58.74% in IP addresses. We

then conduct RTT tests on the obtained web servers using Hping3. Hping3 uses TCP

packets to ping the servers.

Next, we capture traces of cellular control channel messages, performance probe

traffic, data packet captures, and QoS/QoE data over mobile broadband networks.

• Santa Fe, New Mexico: To study the association of mobile network coverage,

performance, and user experience, we undertake an extensive measurement

campaign to collect network traces from eight locations in the Southwestern

United States for four major telecom operators: AT&T, Sprint, T-Mobile, and

Verizon. In this work, we compare rural regions to their urban counterparts.

For our rural datasets, we partnered with rural and tribal communities in New
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Mexico because: (i) the state has the second-highest percentage of American In-

dian population (8.77%) in the United States, just behind Alaska; (ii) it is home

to 23 Indian tribes - nineteen Pueblos, three Apache tribes, and the Navajo

Nation, had the highest poverty rate in the nation at 21.9% [37]; (iii) anecdo-

tal evidence indicated poor network usability and inadequate coverage in the

target locations. At each location, we run extensive tests, capturing signal cov-

erage, network QoS, and QoE for two common applications: Web browsing

and on-demand streaming video. The designation of each location as tribal

or rural is based on information gathered from the Census Bureau [38]. We

collect throughput, latency, packet loss, and Reference Signal Received Power

(RSRP) measurements for QoS metrics. QoE measurements include start-up de-

lay, video quality, resolution switches, rebuffering ratio, buffer size, and page

load times. We run our measurement suite on four Lenovo ThinkPad W550s

laptops, each tethered to its own Motorola G7 Power (Android 9) via USB to

measure cellular performance. The measurement campaign ran from May 28th

– June 1st 2019. We collect and analyze over 32.7 million LTE packets through

these measurement campaigns.

• St. Patrick’s Day, San Diego:

To study overload conditions in LTE networks, we propose a novel solution to

infer overload based on messages broadcast by the eNodeB (LTE base stations).

Through the analysis of multiple message types, we draw clear comparisons

between instances of high network utilization and typical operating conditions

for several eNodeBs. To test our proposed solution, we identify times and loca-

tions in which we anticipate cellular overload, capture traces, and then compare

network performance in those traces with baselines captured in the exact loca-
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tion during normal operating conditions (when no network overload is likely

to occur). We select spaces that are anticipated to have large gatherings but are

unlikely to be provisioned for large crowds (i.e., city streets as opposed to stadi-

ums that typically have sufficient network capacity to handle crowds). Overall,

our dataset consists of over 3.2 million frames, with data collection that lasts for

a cumulative duration of about 5.2 hours. While it is not possible to compute

the exact number of UEs in the vicinity due to the lack of international mobile

subscriber identity (IMSI) number in broadcast messages for security reasons,

measuring the number of temporary unique UE IDs (uniqueUeID) in RRC Con-

nection Requests allows us to estimate the number of active UEs present nearby.

The measurement setup consists of an LTE-enabled USRP tethered to a Lenovo

ThinkPad W550s running Lumos, our scalable platform that infers network

overload and congestion.

– St. Patrick’s Day (SPD) We collect cellular traces during the St. Patrick’s

Day parade adjacent to Balboa Park in San Diego, CA [39]. The parade

was held on Saturday, March 16th 2019, beginning at 10:00 AM and ending

around noon, while the public fair lasted through 3:30 PM. We physically

position our data collection devices within the crowd to better assess the

eNodeBs serving this particular region, as shown in (Figure 2.1(a)). The

total duration of data collection is about 76 minutes, which resulted in

over 1.1 million LTE frames. We observe 27,349 uniqueUeIDs.

– St. Patrick’s Day Baseline (SPD_base) As a point of comparison for the

SPD dataset, we again gather LTE traces from the same location, from 8

PM to 9 PM on Tuesday, March 26th 2019. Collection in the evening on a

weekday helped us avoid unexpected large gatherings in the park’s many
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((a)) SPD dataset.
Balboa Park, San Diego, CA

((b)) CSR dataset.
Downtown San Diego, CA

Figure 2.1: Google aerial map of experimental datasets - SPD/CSR.

venues while still capturing local nightlife activity. Compared to the SPD

dataset, we expect this dataset to exhibit low levels of overload, acting as

a baseline for the location. Indeed, we see about 6,992 uniqueUeIDs. We

collect a little over 275K LTE frames in 65 minutes.

– ShamROCK Concert (CSR) We collect traces from the ShamROCK concert

in the downtown area of San Diego [40] on March 16th 2019. The event

started at 7:00 PM and lasted until midnight. We collect 113 minutes (~1.7

million LTE frames) of traces during this period. This event/location com-

bination (as shown in Figure 2.1(b)) was selected because we anticipated

that the amount of cellular traffic during the event would well exceed the

typical traffic load. Because this location (city streets) does not typically

have large crowds, we expect there to be network overload during a large

event. This dataset contains 42,433 uniqueUeIDs.

– ShamROCK Concert Baseline (CSR_base) As a baseline to the CSR dataset,
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we capture additional traces (~135K LTE frames) in the same location from

9:30 PM to 10:30 PM on March 26th 2019, when the number of pedestrians

and amount of vehicular traffic was more representative of normal operat-

ing hours. We detect only 3,338 uniqueUeIDs during this data capture.

• Suburbs, San Diego:

Similar to SPD and CSR datasets and their experimental setup, we undertake a

separate, extensive measurement campaign to assess overload and congestion

in LTE networks.

– Adams Street Fair (ADM) We gather LTE traces during the 38th annual

Adams Avenue Street Fair in the Normal Heights neighborhood of San

Diego [41]. The street fair was held on Sunday, September 22nd 2019, be-

ginning at 10:00 AM and concluding at 6:00 PM. We physically position our

networking gear in a cafe on the same street as the fair (Adams Avenue)

to better assess the eNodeBs serving this particular region, as shown in

(Figure 2.2(a)). The total duration of data collection is 129 minutes, which

resulted in over 1.63 million LTE frames. In addition, we observe 59,084

uniqueUeIDs.

– Adams Street Fair Baseline (ADM_base) As a point of comparison for

the ADM dataset, we collect LTE traces from the same location, from 7:00

AM to 9:00 AM on Saturday, September 28th 2019. Collection early in the

morning on the weekend helped us to avoid unexpected large gatherings

in the neighborhood while still capturing the activity of local residences

and businesses. Compared to the ADM dataset, we expect this dataset to

exhibit low levels of overload, acting as a baseline for the location. Indeed,
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we see about 5,307 uniqueUeIDs. We collect a little over 316K frames in 57

minutes.

– Concert WaterFront (CWF) We collected traces from the CRSSD music fes-

tival concert at the Waterfront Park in downtown San Diego [42] on Sun-

day, September 29th 2019. We monitor the event between 4:00 PM and 7:00

PM. In total, we collect 126 minutes (1.89 million frames) of traces during

this period. This event/location combination (as shown in Figure 2.2(b))

was selected because we anticipated that the amount of cellular traffic dur-

ing the event would well exceed the typical traffic load. Over this two-day

event, there were an estimated 15,000 attendees. Because the waterfront

does not typically have large crowds, we expect there to be network over-

load during a large event. This dataset contains 69,728 uniqueUeIDs.

– Concert WaterFront Baseline (CWF_base) As a baseline to the CWF dataset,

we capture additional traces (442K frames) in the same location on Mon-

day, September 30th 2019, from 10 to 11 AM, when the number of pedes-

trians and amount of vehicular traffic was more representative of normal

operating hours. We detect only 7,478 uniqueUeIDs during this data cap-

ture.

• The Palace Of Fine Arts, San Francisco: We gather this dataset from San Fran-

cisco Bay Area to assess congestion and overload conditions. The experimental

setup remains identical to SPD and CSR.

– AI Summit (AIS): We gather traces at the AI Summit, held on September

25th 2019 at the Palace of Fine Arts in San Francisco [43] between 10:00

AM to 3:00 PM. The event attracted more than 6000 participants hosted
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((a)) ADM dataset. Adams Avenue, San Diego

((b)) CWF dataset.
Waterfront Park,
San Diego

((c)) AIS dataset.
Palace of Fine Arts,
San Francisco

Figure 2.2: Google aerial map of experimental datasets - ADM/CWF/AIS.

within the confinements of the venue. Because of the size and tech-centric

nature of the event, which requires participants to be digitally connected,

we anticipated cellular congestion. Even though the venue-provided Wi-Fi

coverage, anecdotal evidence suggests that a major fraction of participants

were on cellular service - vibrantly exhibited through severe congestion

on all of our test and personal mobile devices. This behavior could be

attributed to the need to proactively login to Wi-Fi through the dedicated

conference app, which would inevitably require downloading via cellu-

lar data. After parsing our dataset, we observe about 2.34 million LTE

dataframes collected over 149 minutes. In addition, we identify 111,404

uniqueUeIDs.

– AI Summit Baseline (AIS_base): To establish a baseline for network per-
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formance in AIS, we run our network monitoring suite at the same loca-

tion. The venue was closed when the measurements were taken at 9:00

PM on September 26th 2019. Hence, we collect traces from the parking lot,

roughly 30 meters away from our previous placement (i.e., AIS). To mini-

mize any disparity arising from a slight location change, we ensure that all

our devices monitor and connect to the same cell towers that were present

in AIS (this is achieved by matching the CellID parameter). The tests ran

for over 65 minutes and collected over 396K frames. This dataset contains

6,089 uniqueUeIDs.

2.2 Challenges in Data Collection

This section presents our experience analyzing cellular and Internet connectivity

and designing systems based on our analysis. This summary is based on traffic

analysis and our anecdotal experience while spending time in the communities we

have studied.

The underlying economics and purchasing power of a limited customer base has

typically been the limiting factor in securing robust connectivity in rural areas. From

the service provider’s standpoint, there is no motivation to invest in expensive infras-

tructure that will not likely result in revenue that outweighs the capital and operating

costs. As a result, deployment is sparse, and service quality is poor for most users.

Due to a lopsided cost-to-benefit ratio, our anecdotal information reveals that resi-

dents prefer wired-landline phones to cellular subscriptions. In tribal regions that

in our investigation fare worse than rural regions, cellular services are often un-

available, spotty, or of poor quality at best. As a result, tribal community members

often travel tens of miles to secure acceptable service quality from providers. This
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observation indicates that most activities that heavily rely on broadband access are

most likely performed asynchronously, despite the Internet’s promise to enable syn-

chronous operations in a fast, reliable manner. Further, communities on tribal lands

have comparatively lower per-capita income [44] than other US populations. The

lack of and poor quality technological infrastructure and limited access to financial

resources present seemingly insurmountable obstacles to communication. Yet, in

precisely these circumstances, communication is most critical [45].

It is equally challenging to collect network traces from periods of high network

consumption that lead to overload conditions to detect real-world congestion oc-

currences without a precise assessment of the prior provisioning by cellular service

providers. Before collecting LTE packets in San Diego, our research team under-

took many resource-intensive measurement campaigns in Los Angeles (stadiums and

concerts) and San Francisco (packed events downtown). We speculate that the eco-

nomic demand at these specific hot spots led the service providers to proactively

over-provision the network with little to no service disruptions. The lack of con-

gested traffic, despite being unrepresentative of most locations, resulted in unusable

datasets for us. In addition, measurement campaigns that employ off-the-shelf radio

devices during events can seemingly appear as a security threat to law enforcement

agencies. Consequently, several of our planned measurement campaigns were cut

short at the request of law enforcement officers (for instance, during concerts). Such

adverse encounters lead to wasted opportunities for data collection. In other sce-

narios, where a security clearance was mandatory, the long processing times often

did not offer an adequate temporal cushion for the campaigns to materialize. In

our experience, gathering measurements from crowded events (a pre-requisite for a

potential congested network) pose significant logistical challenges.
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2.3 Discussion and Conclusion

Global connectivity is a requirement in today’s society. Consequently, we must

address the issues that come with pushing the boundaries of Internet accessibility fur-

ther. While the global expansion of LTE/5G and fixed Internet access in recent years

has been one of humanity’s greatest scientific triumphs, a significant portion of the

world’s population has yet to be reached. If service is provided, it must be of usable

quality. This thesis looks at the particular issues that communication infrastructure

faces in various network conditions, including both rural and urban settings. For the

scenarios we study, we identify areas for improvement and create robust systems to

address them.

Our effort in this thesis is to extend the state-of-art networking infrastructure to

enable faster, reliable, and accessible Internet to individuals who do not have it and

to areas where it is critically needed. Through our studies, we better understand

the end-user experience within different network conditions across the continental

United States. We create network systems based on our findings to assist in bringing

the next billion people online and improve the experience for those still hampered by

poor connectivity.
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Network Characterization
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Chapter 3

Evaluating LTE Coverage and Quality

from an Unmanned Aircraft System

3.1 Introduction

Billions of users worldwide benefit from high-speed internet access provided by

LTE. However, economic incentives often drive LTE and other broadband technol-

ogy expansion, concentrating deployment in populated urban areas. Economically

marginalized and sparsely populated rural areas remain underserved [19]. In the

United States, for example, rural tribal regions suffer from the poorest LTE cover-

age [24]. Even when cellular providers claim coverage, the poor signal quality can

limit achievable download data rates far below the mobile broadband threshold, de-

fined by the U.S. Federal Communications Commission (FCC) as a median speed of

10 Mbps [24].

For underserved regions in the United States, the FCC has instituted incentive

programs to offset provider infrastructure deployment costs [29, 30]. These programs

determine the bounds of existing coverage and identify coverage deficiencies by semi-
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annually collecting network connectivity reports from commercial network operators.

Every operator that owns cellular network facilities in the United States participates

in data collection by submitting a Form 477 [46]. The reported coverage area consists

of geo-polygons using an operator-defined methodology. Based on this data, the

FCC allocates subsidies to incentivize commercial coverage in underserved regions

and verifies compliance.

The FCC publicly releases annual Broadband Deployment Reports (e.g. [24]), as

well as shapefiles for each operator that indicate geographic coverage areas [46].

However, researchers challenge their accuracy [31, 10, 32]; for example, Meinrath et

al. examined a public dataset of speed tests collected by the Measurement Lab [47, 48]

and demonstrated that broadband access in Pennsylvania is much lower than claimed

in the report. This inaccurate over-reporting can be attributed to the proprietary and

often generous propagation models used by network operators [9]. To validate the

actual state of mobile broadband access, we need publicly controlled methods for

measuring coverage areas and signal quality, particularly in underserved regions.

To audit provider-reported coverage claims, third parties undertake independent

measurement efforts. While the concept of “coverage” remains imprecise [49], net-

work parameters such as the received signal strength (in terms of Reference Sig-

nal Received Power (RSRP)) are typically used to estimate the extent of network

availability. Popular public crowdsourcing platforms, such as CellMapper[50] or

OpenSignal [33], collect measurements from network users and calculate cellular

coverage and signal quality. Data from crowdsourced efforts provide information

over time and for a wide range of devices, but these data cluster around significant

transportation arteries, omitting communities outside of these areas. An alternative

collection strategy employs specialized equipment with dedicated users. For exam-

ple, wardriving typically involves physically navigating rugged terrain in remote
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areas to record on-the-ground measurements [51]. This method enables greater con-

trol over the measurement process and the geographic scope but scales poorly due

to considerable time investment and labor costs.

Because existing strategies suffer from the abovementioned drawbacks, we need

alternative solutions for measuring LTE coverage and signal quality. An ideal method

should enable quick assessment using measurements of the RF landscape throughout

large areas (on the order of square miles), even if hard to access. In addition, new

strategies should provide scalability for equipment and human resources. Based on

these criteria, off-the-shelf software-defined radios offer a viable solution. However,

because SDRs can cost anywhere between tens of dollars to a few thousand dollars,

it is crucial to study the relationship between the precision of readings and the cost

of the equipment to determine whether more affordable equipment will suffice.

Unmanned Aircraft Systems (UAS) can carry payloads while maintaining appre-

ciable flight times to reduce the human effort of spectrum scans. The availability of

low-cost, programmable, highly agile unmanned aerial vehicles has spurred interest

in employing aerial RF sensing for cellular coverage mapping [52, 53]. UASs enable

coverage for large geographic areas, which may be costly, complex, or impossible

to cover on foot or the land. Network operators, such as Verizon, already employ

UASs for visually inspecting equipment after natural disasters [54]. Extending UAS

capabilities to include signal measurements is an active area of interest for various

wireless applications [55, 56]. These extensions could further enable uses for scalable

rural cellular coverage mapping as well as post-disaster recovery efforts. Small form-

factor Software Defined Radios (SDR) with high sensitivity, such as the RTL-SDR

(RTL2832U chipset with an Elonics E4000 Tuner), are proving increasingly useful for

LTE applications [57, 58, 59]. This SDR is ideally suited for UAS application. How-

ever, the high altitude of UAS flight relative to the ground poses challenges to the
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efficacy of these approaches. As antennas on LTE towers are provisioned for ground

transmission, the RF radiation pattern picked up at high altitudes may not reflect

signal quality on the ground [60].

This chapter assesses the accuracy of a low-cost, small form-factor RTL-SDR for

sensing LTE eNodeB signal strength over a wide area through integration with an

off-the-shelf quadcopter UAS. To do so, we first compare the reading accuracy of this

airborne sensor with commonly used hardware for ground-based wardriving ap-

proaches (i.e., a spectrum analyzer and a USRP). Further, because no existing studies

systematically examine the effect of altitude on signal strength measurements, we

fly the UAS at varying altitudes across multiple locations and examine how aerial

signal sensing can be aligned to ground-level measures. Because minimal previ-

ous research compares observed signal strength between measurements collected by

the user equipment (UEs) (i.e., smartphones, tablets, and hotspots) and UASs, we

deployed four cellular devices on the ground, each collecting measurements from

different cellular networks, and compared these measurements over the same ge-

ographic area to those collected by the RTL-SDR on the UAS. We look to the UE

measurements as “ground truth" because the UE readings capture examples of the

actual coverage and performance a user in the given location would experience with

UE.

Our findings reveal that the simple RTL-SDR has comparable accuracy to expen-

sive solutions and can estimate quality within one gradation of accuracy compared

to the user equipment. Further, we show that these devices can be mounted on a

UAS to measure coverage across wider geographic regions more rapidly. Our results

show that the low-cost aerial measurement techniques have 72% accuracy relative to

the ground readings of user equipment and fall within one quality gradation 98% of

the time. Our findings, taken together, offer a detailed look at the efficacy of low-cost,
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public-controlled aerial coverage and quality sensing.

This chapter proceeds as follows: Section 3.2 overviews related work. Section 3.3

explains the methodology and the corresponding datasets, while our analysis and

results are presented in Section 3.4. Section 3.5 discusses impact of this study and

future work, and Section 11.7 concludes the chapter.

3.2 Related Work

RF Spectrum Sensing with SDRs: Previous studies involving wide-scale cellular sens-

ing include analysis of GSM pollution [61] and propagation model verification for

LTE signals [62]. In one study, an SDR was mounted on a UAS to navigate the flight

path by LTE location signalling [63]. In contrast, our study uses only passive sensing

with a very lightweight SDR to discover ground truth signal strength readings. We

show that low-cost equipment detects LTE availability to produce a coverage map

using RSRP measurements that aligns with the ground truth UE measurements. In

our study, we adopt a wide-scale television white space sensing approach used by

Saeed et al. [64], but we adjust for LTE instead of TV frequencies.

RF Spectrum Sensing with UASs: Considerable prior work has focused on identifying

the application of UASs for cellular networks. Batistatos et al. [52] study the variation

in LTE signal strength and SINR for both an underserved rural area and an urban

center. A UAS connected to an existing LTE network monitored the LTE signals in

various altitudes [53]. The authors found that at 60m to 100m above the ground,

LTE coverage probability climbs to 90%, and the received power gains 18 dB for the

ground level. However, this work did not compare measurements taken from the

aerial platform to those taken from a ground-level UE.
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Lin et al. [60] shed light on the applicability and performance of mobile network

connectivity to low-altitude UASs by analyzing downlink channel indicators, such

as RSRP. While the study in [65] examines the variation of RSRP, RSRQ, and SNR

throughout a drive-by style campaign in an urban university campus using a passive

monitoring device, little prior work has explored the effective measurement of re-

ceived signal strength using SDRs accompanied by an adequate validation from UE

readings.

LTE Performance Measurement with RSRP:

Estimation of received signal strength plays a vital role in many control plane

operations, including inter- and intra- eNodeB handovers [66, 67, 68, 69, 70]. Precise

detection of RSRP plays a crucial role in these handovers and several diagnostic

methods in LTE networks. For instance, Anas et al. [71] evaluate the performance of

RSRP handovers in LTE. They observe that a handover margin of 2dB to 6dB (RSRP)

leads to an optimal number of handovers without sacrificing much uplink SINR (for

a specific range of user velocity). The effect of RSRP measurement bandwidth on the

accuracy of handovers is studied in [72, 70]. From a telecom provider’s perspective,

this suggests a need for up-to-date, accurate RSRP space maps for improving service

quality.

Several prior works examine the relationships between RSRP, RSRQ, and SINR [73,

74, 75, 76], but little work explores the correlation between passive monitoring of LTE

channels and ground UE readings. In [77], the researchers examine the viability of

deploying LTE connectivity using UASs in rural areas. Their results indicate that the

coverage outage level increases from 4.2% at an altitude of 1.5 m to 51.7% at 120 m

under full load conditions. Another study analyzed a set of live network measure-

ments conducted with an LTE scanner attached to an airborne UAV [78]. The findings
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suggest improved radio clearance as the UAV increases altitude. The increase in the

average number of detected cells as altitude increases corroborates these findings.

Our study offers the first look into conducting reliable RSRP measurements with

UAS using low-cost off-the-shelf SDRs to our knowledge.

3.3 System Overview and Methodology

We collected ground and air measurements in two regions in Rio Arriba County,

New Mexico, for five days, beginning May 28, 2019. For each region, we obtained

permission to drive through residential areas and fly a UAS equipped with a sensor.

This section describes the six unique RF sensing methodologies employed in our

analysis. Like all wardriving studies, our work is necessarily limited in scale. How-

ever, these ground measurements are uniquely helpful for contrasting the efficacy of

each measurement technique. In all cases, our methodology is generalizable. Fig-

ure 3.1 shows images of many of our sensing set-ups.

Method 1: Ground-Driven User Equipment (UE) Sensing:

In our wardriving campaign, we record signal strength readings from four Mo-

torola G7 Power (XT1955-5) phones, each running Android Pie (9.0.0). We collect

measurements using the Network Monitor application [79]. An external GlobalSat

BU-353-S4 GPS connected to an Ubuntu Lenovo ThinkPad laptop gathered geoloca-

tion measurements, which we matched to the appropriate ground measurement by

timestamp. We outfitted each phone with a SIM card from one of the four top cellular

providers in the region: Verizon, T-Mobile, AT&T, and Sprint. The phones recorded

signal strength every 10 seconds while we drove at speeds less than 10 miles per hour

through the areas of study.
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a. UE b. Ground Measurement Kit

c. UAS d. Stationary box

Figure 3.1: Sensing equipment.

Method 2: Ground-Driven Spectrum Analyzer:

We gathered measurements on LTE channel center frequencies with a high-precision

Keysight N9340b spectrum analyzer (SA) using a ham radio antenna capable of sens-

ing signals up to 3 GHz. The SA was transported inside the measurement vehicle

while the antenna was magnetically mounted to the roof.
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Method 3: Ground-Driven USRP:

We collected center frequency readings with an Ettus Research USRP B200, a ver-

satile software-defined radio widely used for LTE and TV frequency experimentation

and sensing. The USRP measured the same LTE channel center frequencies as the SA

through a ham radio antenna placed beside the identical SA antenna.

Method 4: Ground-Driven RTL-SDR:

We also collected center frequency readings with a NooElec RTL-SDR RTL2832U

and Elonics E4000 Tuner, an inexpensive software-defined radio operating at 55MHz-

1100MHz and 1500MHz-2300MHz ranges. The RTL measured LTE channel center

frequencies through a ham radio antenna placed beside the identical SA and USRP

antennas.

Unlike the USRP B200, which, when inside a transportable case, is bulkier and

more expensive, the RTL-SDR is low-cost and protected in a smaller form factor. This

specific model of RTL-SDR covers most LTE frequencies and is simple to equip onto

a UAS or deploy at a static site for long-term monitoring. This ground-transported

RTL-SDR is a comparison point for the UAS and longitudinal sensing experiments

described in subsequent subsections.

Methods 5: Aerial Sensing Platform:

Our UAS consisted of a DJI Matrice 100 quadcopter, as shown in Figure 3.1(c).

The UAS collected signal strength readings via a NooElec RTL-SDR (the same model

used for ground measurements) connected to a Raspberry Pi 2—Model B onboard

computer via USB. The location of the UAS was recorded from the Matrice 100 on-

board GPS, sampling at a rate of 50 Hz and using a UART connection to the Pi.

Horizontal Coverage Mapping. In one set of experiments, we manually flew the

UAS at varying speeds and elevations (to clear obstacles and keep the UAS in line
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of sight) to map coverage. We attempted to cover the same areas as the UE and

ground measurements. UAS measurements occurred the same day as the other data

collection for each geographic region, but sometimes several hours apart.

Vertical Experiments. To investigate the impact of elevation on signal strength

measurements, we performed four sets of vertical-only flights. Each set of flights

was conducted in a different geographic region of our measurement area. During

each vertical flight, the UAS was raised by 10ft increments approximately every 15

seconds to 100ft. It was then raised in 20ft increments roughly every 15 seconds to

400ft (the maximum FAA non-exempt altitude limit).

Method 6: Stationary Box:

Because continuous monitoring in an area can be costly in terms of equipment and

manpower, coverage mapping is typically completed via sampling over a short time

frame. For example, in our ground sensing driving campaign, we take all samples

over a maximum of one hour for each unique location. As part of our study, we seek

to verify that this one-shot sensing method is appropriate for estimating long-term

spectrum availability.

We, therefore, measure spectrum occupation over time in a single location to

monitor changes. We enclosed a NooElec RTL-SDR (the same model as is utilized by

the ground measurements and UAS) run by a Raspberry Pi 3 B+ in a weather-proof

case with the stock antenna on top of the case, shown in Figure 3.1(d). Over two days,

the RTL continuously iterated through a pre-programmed list of all 20 known LTE

frequencies for the four network providers in the area and recorded signal strength

readings for each frequency every three seconds.

This method monitors the stability of the RTL-SDR measurements over time. It

can indicate the appropriate flight time necessary to generate a consistent measure
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of signal quality in an area. While this data is not generalizable geographically, it

provides insight into the precision of signal strength reading from an RTL-SDR.

LTE Channel Selection by Provider:

Before data collection, we compiled a list of LTE cellular frequencies in use by the

top providers in the area. This compilation was needed for every sensing method

other than the UEs, which pulled the active frequencies automatically for their re-

spective provider. We compiled this list using two complementary processes. First,

on each UE, we ran CellMapper [50], an Android application that allowed us to query

the active frequencies detected by the device for the corresponding LTE provider. We

supplemented this list with a scan using a spare Ettus Research USRP B200, equipped

with a wideband LTE dipole antenna [80], connected to a Lenovo ThinkPad laptop

running srsLTE [81]. Using srsLTE we performed a scan of all possible LTE fre-

quencies operated in the United States and appended to our list any frequencies not

previously discovered. Since UEs choose the strongest frequency to communicate

with a nearby base station, we could locate other frequencies available from nearby

cells, which the UEs would not use at our test sites but could jump to intermittently.

As we moved between regions, we added all newly detected frequencies to the list

scanned by all sensors.

The resulting list contained 22 frequencies in the area served by the four providers.

Because the NooElec RTL-SDR is limited to 2300 MHz, two of the detected frequen-

cies (2628.8 MHz and 2648.6 MHz) were outside the range frequencies we could sense

on the Ground RTL, Stationary Box, or UAS and are dropped from our analysis.
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Spectrum
UE UAS Analyzer USRP RTL-SDR

UE 1152 - - - -
UAS 305 812 - - -

Spectrum Analyzer 131 53 1199 - -
USRP 131 53 1199 1199 -

RTL-SDR 131 53 1199 1199 1199

Table 3.1: Number of overlapping geographic bins by signal collection method.

3.4 Analysis

3.4.1 Accuracy of Data Collection Methods

Preparing data for geographical analysis

Because multiple devices and personnel participated in data collection, the data

was not sampled at the same timestamp or precise GPS location for all methods. For

example, the ground sensors and the UAS passed over the same residential area but

may not have covered the same 1-meter GPS coordinate due to road availability. To

accurately compare data collected by different methods, we first aggregate data into

geographical bins of three decimal places of GPS accuracy, approximately 110 square

meters in area. Then, for each method and each set of readings on different LTE

frequencies, we take the mean across all the signal strength values that fall into that

geographic bin.

The data collected by the UEs included only the network provider (AT&T, Sprint,

T-Mobile, and Verizon) and not the frequency on which the UE was operating. To

compare this to the other data collection methods, which report frequency instead

of the network, we first map each frequency to the corresponding network provider

using the frequency list described in Section 3.3. For each network provider and ge-

ographic bin, we then select the frequency with the strongest signal strength and set
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Figure 3.2: Kernel density estimation of original data by signal collection method.

that as the signal strength for the provider in that bin. This method resulted in 2,637

unique 110m2 geographic bins. Not every area was sampled by every method. The

resulting overlap between methods and geographic area is summarized in Table 3.1.

Transforming Raw Signal Readings

The UEs, spectrum analyzer, RTL-SDR modules (including the one mounted on

the UAS and in the stationary monitoring box), and the USRP all report signal

strengths on varying scales. We show the original distribution of the relative sig-

nal strengths for each collection method in Figure 3.2. As we can see, while the

distributions have similar normal-like peaks, the offsets and width do not match.

While the spectrum analyzer outputs dBm, the other devices report relative signal

strengths. As we are interested in the end user’s experience, we first need to trans-

form the raw relative signal strength readings to match the UEs before comparing

data collection methods.
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To do so, we first perform a min/max normalization on each method, as shown in

Equation 3.1, where ~O is the original data, m 2 {spectrum analyzer, USRP, RTL, UAS}

is the method and ~N is the normalized data.

~Nm =
~Om � min(~Om)

max(~Om)� min(~Om)
(3.1)

Next, we offset and scale the other methods to align them with the signals re-

ceived by the UE. To do this, we randomly selected 50% of our data as a training

set. On this training set for each method, we find an offset xm and scaling factor

am to minimize Equation 3.2, where nm and nue are measures taken from the same

geographic bin and cellular network provider. If a method does not have a matching

UE measurement, it is omitted from the sum.

min
xm,am

 

Â
nm2~Nm

[am(nm + xm)� nue]
2

!
(3.2)

Finally, we scale and offset all of our data for every method other than the UE by xm

and am, and scale back to the readings of the UE as expressed in Equation 3.3, where

~Tm is the resulting transformed data for each method. We can now compare signal

strength readings to one another and the UE by transforming the data. The resulting

transformed distributions are shown in Figure 3.3. We use this transformation for

the rest of our analysis to report signal strength values in dBm.

~Tm =
h

am
�
~Nm + xm

�i�
max( ~Nue)� min( ~Nue

�
+ min( ~Nue) (3.3)

39



Evaluating LTE Coverage and Quality from an Unmanned Aircraft System Chapter 3

Figure 3.3: Kernel density estimation of transformed distributions by signal collec-
tion method.

Estimating signal strength

We computed the Pearson correlation on each method pair. We found only a weak

linear relationship between the collection methods and the readings from the UEs,

even after transforming the data. As signal strength can vary, even between different

UE device makes and models, we categorize the level of signal quality rather than

predicting the exact signal strength a UE would receive in an area by dividing the

signal strength levels into five groups based on criteria in Table 3.2. While there is

no standard for defining what LTE signal strength corresponds to what quality, we

Signal Quality Range Color

Bad <120 dBm Black
Poor -120 to -111 dBm Red
Fair -111 to -105 dBm Orange

Good -105 to -90 dBm Green
Excellent >90 dBm Blue

Table 3.2: Categorization of signal strength into signal quality bins.
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Figure 3.4: Accuracy of signal collection methods as compared to the UEs.

model our criteria after those suggested by SignalBooster [82].

Based on this categorization, we compare how each method sorted the signal

strength readings across the geographical bins, using the UE as ground truth. We

summarize our results in Figure 3.4. The UAS was closely aligned with the UE,

matching values for 72% of the geographic bins. When allowing for one signal quality

of discrepancy (for instance, a method stating a signal was Fair when the UE labeled

it as Poor), all methods had over a 95% accuracy, with the UAS again leading with a

98% accuracy. A notable result was that error was skewed towards under-predicting

the received signal strength. Accounting for this bias when estimating UE reception

would improve accuracy further.

3.4.2 Longitudinal Analysis

From the stationary radio (introduced in Section 3.3), we received 684,096 read-

ings over two days. To measure the relative stability of signal strength readings,
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Figure 3.5: Distribution of deviation from mean signal strength of all monitored LTE
frequencies.

we calculated the deviation from the mean of the corresponding frequency for each

reading. To determine the stability across different time scales, we re-sampled the

data over multiple time scales (1 minute, 1 hour, 1 day), averaged the intermediate

readings, and re-computed the deviation of each sample. The resulting time-series is

shown in Figure 3.5.

As expected, raw readings (with a sampling frequency of 3 Hz) fluctuated con-

siderably, with a total range of 80dBm and the majority of fluctuations < 7 dBm from

the mean. When comparing minutes, most of the reading was < 3 dbm from the

mean. When comparing hour to hour, most signals deviate < 1 dBm from the mean.

Comparing two days of data across all frequencies, most signals did not deviate.

We analyzed the distribution of hour-to-hour signal strengths across the 20 moni-

tored LTE frequencies, as shown in Figure 3.6. Most readings across the two-day time

span fell within 1 dBm of each other. The most significant change in signal strengths

between two hours was observed on 739.0 MHz (utilized by AT&T) and 1967.5 MHz

(used by Verizon), which exhibited 7dBm changes.

The end-user is most impacted by the signal strength of the frequency chosen by
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Figure 3.6: Distribution of signal strength by frequency over period of observation,
averaged across one hour windows.

Figure 3.7: Signal strength over time by provider gathered by stationary box. Night
hours are shaded in blue.

the UE. We also examine the hour-by-hour change in network signal strength. For

each operator, we choose the frequency with the maximum average signal strength

for every hour time window. We present the results in Figure 3.7. While there is a

slight improvement in signal strength during nighttime hours, for each network, the
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Figure 3.8: Deviation of signal strength from mean.

total hour-to-hour fluctuations in signal strength are minimal.

3.4.3 Impact of Altitude

To analyze the impact of sampling altitude on signal strength, we executed mul-

tiple vertical flights in four different locations, as described in Section 3.3. In our

analysis, we keep the four locations separated and examine how signal strength at

each LTE frequency varies with altitude from the ground. To compare frequencies,

we calculate the deviation of each signal strength measurement from the mean of

that frequency at each location. We then group altitudes into 20-foot bins and exam-

ine the distributions of altitudes across those bins at each of the four locations. We

present the results in Figure 3.8.

Our results show that signal strength variation can be quite dependent on loca-

tion. The first and third locations, Flat Rural and Residential respectively, were located
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Figure 3.9: Signal strength change by altitude and network.

level with a wide area of flat terrain surrounded by low hills. At these locations, the

vertical UAS flight showed an overall increase in signal strength as altitude increased

across LTE frequencies. This might suggest that coverage mapping may be sensitive

to flight altitude in low-lying terrain, away from strong cellular readings.

The second location, Urban, was in a more urban area with better cellular cover-

age. In this area, the altitude did not alter the signal strength of frequencies sensed

by the UAS. The fourth location, the Hilltop, was located high on a hill approximately

400ft above the Residential area. At this location, altitudes over 160ft showed a drop

in signal strength across most of the monitored LTE frequencies. One possible ex-

planation is that the aerial vehicle may have difficulty detecting coverage at altitudes

significantly higher than the provisioned coverage area.

In addition to examining frequency fluctuations, we examine the received signal

strength by the cellular network provider. In Figure 3.9 we show the mean change
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in signal strength across all frequencies with altitude for each network and location.

The change in signal is network-dependent, and the difference between networks

depends on location. A probable explanation for the observed difference is that the

eNodeBs serving these networks are in disparate geographic locations with different

signal propagation patterns.

3.5 Discussion

While we observe clear relationships between sensing methods, the devices’ rel-

ative signal strength values output are weakly correlated, particularly to the UEs,

even after transforming the data to a typical reference frame. We believe the prob-

lem stems from the difficulty in aligning the various methodologies for comparison.

Because we could not capture the frequencies on which the UEs operated, we com-

pared the frequencies with the highest signal strength for a given method. This may

not always match the actual frequency used by the UE. Additionally, the wardriving

readings from the RTL-SDR, USRP, and SA are more difficult to collect due to the

labor involved. As a result, there are fewer points of geographic overlap than for the

UE and UAS measurements.

By categorizing individual signal strengths by quality, mirroring the “bars” of

signal strength that a user’s device might report, we could accurately match these

categorical measurements across measurement methods. As the most versatile col-

lection method, the UAS predicted quality within one gradation over 98% of the

time. This aerial signal sensing method demonstrates promise as an effective system

for wide-scale cellular coverage mapping.

We generated a coverage map for each method and provider based on our exper-

imental data. Figure 3.10 shows a portion of the map for Verizon. The readings from
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the UE are shown in Figure 3.10(a), and those taken from the UAS on the same day

are shown in Figure 3.10(b). Colors and values correspond to Table 3.2, with high

RSRP in green and low in red.

a. Map from UE readings b. Map from UAS readings

Figure 3.10: Cellular coverage map generation.

Next, we evaluated how the design of our aerial data collection impacted the

accuracy and precision of UAS signal quality assessment. We considered: 1) how a

sample taken at a particular time compares to the overall LTE channel quality during

a 24-hour period; and 2) how different UAS altitudes impact this characterization.

Sensing over Time:

Consider the longitudinal analysis of the stationary sensing equipment from Sec-

tion 3.4.2. For most frequencies, a single flight is sufficient; most readings fell within

3 dBm of each other. However, specific frequencies may be less stable. For example,

two channels within the two-day deployment showed values varying by up to 7 dBm,

which is wide enough to bump a reading by two signal quality levels (e.g., Good to

Fair, or even Poor).
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As observed in Figure 3.6, RTL-SDR signal strength measurements fluctuate be-

tween readings. The average of multiple readings provides a more stable description

of signal quality in a geographic region. Because the UAS would need to take dozens

of samples from a geographic region, the flight pattern and maximum flight speed

would vary with the desired granularity of the measurements. The UAS must fly at

low speeds to achieve high granularity (e.g., building-level accuracy) and at higher

speeds to achieve greater coverage but lower granularity (e.g., neighborhood level).

Alternatively, the UAS can fly at higher speeds following a flight plan that conducts

repeated measurements at the same location (e.g., through flight loops).

RF signals sometimes fluctuate based on moisture and other weather conditions.

In this study, we did not capture the sensitivity of RTL-SDR signal strength measure-

ments to weather fluctuations and seasonal changes. The stationary sensing equip-

ment was deployed on clear days with no rain, a daily temperature high of ⇡ 72 and

a low of ⇡ 52. In future work, examining how signal readings from an RTL-SDR vary

for much more extended periods would be informative. Such an assessment could

reveal whether the RTL-SDR equipped UAS requires calibration depending on cur-

rent weather. This study would also help understand how cellular network quality

measurements from our system may fluctuate during or after a natural disaster.

Choice of Altitude:

To measure how altitude affects signal quality, we look to the analysis in Sec-

tion 3.4.3. The interaction between altitude and signal strength reception by the

UAS is complex. The local geographic topography seems to be the dominant fac-

tor in received signal strength. When flying in low valleys, an increase in altitude

corresponded to an increase in mean received signal strength. Yet, signal strength

declined when ascending from a hilltop above the residential area. Because network
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providers’ orientation of cellular tower antennas is provisioned to optimize coverage

at elevations of residences and businesses [60], aerial collection at altitudes (in our

case, approximately five hundred feet above the residential height) may see degrada-

tion in signal strength.

The effect of altitude on signal quality has implications for evaluating LTE cov-

erage and availability for the occupants of high-rise buildings. We could use aerial

systems in dense city centers to map signal strength in three dimensions. Conven-

tional measurement methodologies would not account for such a measure of signal

quality across floors in skyscrapers.

3.6 Conclusion

We have shown that a UAS-mounted RTL-SDR can provide a granular reflection

of LTE signal strength. Our low-cost solution enables accurate coverage mapping and

quality assessment in regions typically neglected by other assessment forms. More-

over, our system achieves this without requiring expensive specialized equipment,

extensive time commitments, or significant manpower. This work aims to pave the

way for future solutions that more accurately represent cellular coverage, particu-

larly in those regions that are likely under-served. With that goal in mind, we build

on this work to evaluate mobile broadband performance from ground-truth active

measurements. We present our analyses and observations in the next chapter.
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Chapter 4

Coverage is Not Binary: Quantifying

Mobile Broadband Quality in Urban,

Rural, and Tribal Contexts

4.1 Introduction

LTE plays an increasingly critical role in providing pervasive Internet access. A

2019 Pew Research study reports that roughly one in five US adults is "smartphone-

dependent," meaning they solely rely on mobile broadband for Internet access at

home [83]. Individuals living in rural and tribal regions are particularly likely to

rely on mobile broadband for Internet access [45]. As growing numbers of people

depend on LTE networks as their primary means for accessing healthcare, financial,

and educational services, it has become critical to evaluate how well these networks service

user applications. Due to the COVID-19 pandemic, the urgency of assessing the quality

of experience for applications delivered over mobile broadband has skyrocketed as

stay-at-home orders, and rapid movement to online schooling increase the demand
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for applications that are known to be sensitive to network quality, such as video

streaming and interactive video chat [5]. As a result, communities without access to

usable, high-speed broadband, such as many rural and tribal regions, are severely

disadvantaged [26].

There is a need for targeted measurement campaigns that represent performance

within challenged networks [84]; the Federal Communications Commission recently

encouraged researchers to undertake campaigns to study and report the state of ru-

ral networks [85]. Our goal is to understand the mobile quality of service (QoS) and

quality of experience (QoE) performance profiles for common and increasingly essen-

tial applications such as video streaming and Web browsing, in a variety of network

conditions. To do so, we undertook an extensive measurement campaign to collect

16 datasets of network traces in the Southwestern US for four major telecom opera-

tors: AT&T, Sprint, T-Mobile and Verizon, gathering over 30 million LTE packets. An

overview of the datasets is provided in Chapter 2 (§2.1). We collected measurements

of LTE networks in tribal, rural, and urban communities to understand geographic

performance discrepancies. While we anticipate that network performance in tribal

and rural areas will differ from that in urban areas because rural and tribal networks

are often under-provisioned [6, 84], our study aims to quantify the severity of perfor-

mance degradation in under-provisioned networks. Service quality is not a binary

label, just like cellular coverage; for instance, application performance is subject to

network conditions. Our goal to quantify network performance stems from the need

to indicate the behavior of different applications accurately and not simply label a

region as "covered" or "not covered."

Our tribal and rural measurements were conducted in New Mexico. New Mexico

is one of the least densely populated states in the US, and 10% of its land area

belongs to one of the 23 sovereign tribes with territories in the state [86]. In the
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rural regions, there is a high concentration of smartphone-dependent residents [87].

In addition to the tribal and rural contexts, we collect network traces from crowded

events in urban locations in California, during which atypically high volumes of

network utilization cause congestion. For comparison, we also collect traces from

the exact urban locations during typical operating conditions as a baseline. Our

datasets have broad spatial and temporal variability but can be classified into three

categories: under-provisioned (rural and tribal), congested (congested urban), and

well-provisioned (baseline urban).

While Web browsing is a critical component of daily Internet access, streaming

video currently accounts for 65% of all downstream mobile traffic worldwide [88]

(for instance, in the US, more than 80% of the population possess some form of video

streaming subscriptions [89]). Therefore, we focus our analysis on understanding

web browsing and streaming video QoE for these regions. At each location, we collect

extensive QoS and QoE measurements. Based on our analysis, we illustrate critical

performance differences between the three location categories. Our key contributions

and findings include:

• Collection of 16 network performance datasets from 12 locations across the

Southwestern US, representative of three network conditions: under-provisioned

(rural and tribal), congested urban, and well-provisioned urban;

• Characterization of LTE traffic across all locations and network conditions in

the datasets, through analysis of four QoS and six QoE metrics;

• Analysis of QoS and QoE data reveals that rural and tribal LTE networks con-

sistently perform worse than the studied urban baseline deployments and are

typically comparable to or worse than congested urban networks.

52



Coverage is Not Binary Chapter 4

Type Metric Test Interval # of Datapoints Tools

QoS RSRP 1 second 2160 Network Monitor
Throughput 1 second 2160 iPerf
Latency 1 second 960 HPing3
Packet loss N/A N/A tshark

QoE Start-up delay 1 second 2160 Selenium, iframe API
Video quality 1 second 2160 Selenium, iframe API
Resolution switches 1 second 2160 Selenium, iframe API
Rebuffering percentage 1 second 2160 Selenium, iframe API
Buffer size 1 second 2160 Selenium, iframe API
Page load time N/A 300 Selenium, Chromium

Table 4.1: Overview of QoS and QoE metrics at each location, aggregated across
available providers.

4.2 Evaluation Metrics

Typically, a binary representation of cellular coverage (i.e., is an area covered or

not) is used to characterize the state of Internet connectivity over LTE networks. How-

ever, from our own experiences, as well as that of others [10], such a simplistic char-

acterization of networked services over LTE networks is insufficient. This becomes

increasingly true in rural regions, as base station coverage areas are more significant

and weaker signals are more commonly experienced. Even in well-covered urban ar-

eas, performance can suffer during times of atypically high usage, i.e., flash crowds

due to a heavily attended community event [90, 91]. As application requirements

place more load on the network, it becomes critical to determine whether coverage

exists in a region and whether that coverage is of high enough quality to support the

types of applications wanted or needed by the local users. As we have seen with re-

cent shelter-in-place orders due to COVID-19, residents of regions with sub-standard

Internet access are at risk of being left behind educationally, economically, and med-

ically [25, 26]. To evaluate network quality, we turn to QoS and QoE metrics and

use these metrics to analyze the ability of the networks to support the most accessed
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applications: Web browsing and video streaming traffic, which are applications of

high, and still growing usage. In this section, we describe the QoS and QoE metrics

collected for this measurement study, summarized in Table 10.1.

4.2.1 Quality of Service Metrics

Different applications have different network requirements, and QoS metrics cap-

ture the state of network performance. For instance, delay-sensitive Internet traffic,

such as live streaming video and multimedia teleconferencing, requires low end-to-

end delay to maintain interactivity; an application such as on-demand gaming is

dependent on both end-to-end delay and achieved throughput. Barriers to attaining

QoS in LTE networks include poor coverage quality and high network utilization. We

measure four metrics to determine QoS.

Reference Signal Received Power (RSRP): RSRP is defined as the linear average over

the power contributions (in Watts) of the resource elements that carry cell-specific ref-

erence signals within the measurement frequency bandwidth [92]. Although many

key performance indicators (KPIs) are related to received signal strength, we focus

specifically on RSRP, as defined by 3GPP [93]. [94] demonstrates that RSRP sig-

nificantly impacts the mean opinion score (MOS) of video streaming; MOS varies

greatly at RSRP values between -84dBm and -102dBm and declines rapidly below

-104dBm. RSRP is used for a variety of LTE operations (e.g., cell selection, handover

decisions [69], network quality assessment, etc.) and, as illustrated by [95], is widely

accessible through mobile operating systems. Typically, RSRP is reported in dBm

by the user equipment (UE) as the average power over several narrow-band control

channels. We record instantaneous RSRP readings from the user equipment every

second through the Network Monitor application [79].

54



Coverage is Not Binary Chapter 4

Throughput: Our network monitoring suite automates the collection of throughput

measurements by fetching a pre-specified 500 MB file from an AWS instance hosted

in Virginia. For uniformity, we use the same example for all measurement tests. To

calculate the throughput, the client initiates iPerf threads over TCP to download the

file. The large file size allows the data traffic to fill the pipe and minimize the effect

of a slow start. We log the packet traces at the client during the iPerf tests to sample

throughput over one-second intervals for each location.

Latency: We measure round-trip times through pings, initiated by Hping3 [96],

to the same Virginia-based AWS server. We configure Hping3 to use TCP packets

instead of ICMP because ICMP packets were occasionally dropped at the server.

The latency test runs for 120 seconds with one-second intervals between each ping.

We measure latency twice during each measurement session: once before the video

stream and throughput tests (described above) and once immediately after. Hence

we collect 240 latency datapoints per operator, for 960 total at every location. Low

round-trip times tend to be indicative of a better user experience for delay-sensitive

applications.

Packet Loss: Packet loss in cellular networks can occur due to network congestion

and transmission errors [97]. We analyze the synchronous packet traces from both

the client and the server during throughput tests to compute packet loss using tshark

CLI.

4.2.2 Quality of Experience Metrics

To measure QoE, we focus on streaming video and Web browsing, currently

the most heavily used QoE-centric applications in mobile networks [98]. Internet

video streaming services typically use Dynamic Adaptive Streaming over HTTP
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(DASH) [99] to deliver a video stream. DASH divides each video into time inter-

vals known as segments or chunks, encoded at multiple bitrates and resolutions. We

measure various metrics associated with video streaming quality, as described below.

To assess web browsing quality, we measure the page load times of some of the

most frequently accessed Web pages. Numerous studies and media articles report its

importance for user experience [100, 101], and consequently to business revenue. The

QoE metrics we measure are summarized in Table 10.1 and are described below. Our

approach for measuring the majority of these metrics is described in section 10.2.2.

Start-up Delay: Start-up delay is the time elapsed from when the player initiates a

connection to a video server to when the application starts rendering video frames.

This delay usually corresponds to how quickly the HTTP adaptive streaming client

can fill the threshold buffer required for playback.

Video Quality: Video quality is the number of pixels in each dimension of a video

frame [102]. Video quality, or resolution, is an essential component of QoE; a higher

resolution results in a better visual experience up to a point.

Resolution Switching: Frequent changes in video resolution can result in user frus-

tration, mainly when the video quality is downgraded [98]. We compute the number

of samples that had a different resolution from the prior sample in our video stream-

ing sessions as a percentage of the total number of samples collected during the video

session. Since resolution switches occur in-between video chunks that are typically

4–5 seconds long [102], our analysis at one-second granularity is a lower bound esti-

mate, if not better. Both the magnitude (difference in pre-and post-switch resolution)

and the frequency of video resolution switches affect the quality of experience [98].

Rebuffering Percentage: A rebuffering occurs when the application buffer waits to

accumulate enough content to resume playback. Poor link quality and congestion can
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increase video rebuffering events because they cause delays in packet delivery [103].

When rebuffering occurs, the user notices interrupted video playback, commonly

referred to as stalling. Rebuffering events have a crucial influence on user satisfaction

and significantly impact video abandonment [104]. We represent the rebuffering

percentage as the amount of time the video stalls during the playback expressed as a

percentage of total playback time.

Buffer Size: The streaming client employs a playout buffer or client buffer, whose

maximum value is the buffer capacity (in seconds) to temporarily store chunks to

absorb network delay variations (i.e., jitter). To ensure smooth playback and adequate

buffer level, the client requests a video clip chunk by chunk (in seconds) using HTTP

GET requests and dynamically determines the resolution of the next chunk based on

network conditions and buffer status. When the buffer level is below a minimum

threshold, the client requests chunks as fast as the network can deliver to increase

the buffer level. The playback stalls when the buffer is empty before the end of the

playback is reached.

Page Load Time: To compute load times, the fetching of Web pages is automated

using Selenium [105]. We use the Tranco Top 25 list [36]. For evaluation, we log

the navigation timings of a Web page starting from navigationStart through the

loadEventEnd event [106]. These event timings help in a fine-grained analysis of

page load times. We download each webpage three times and average the results.

The browser cache is automatically wiped out after each Web page load to reflect the

true load time for the next iteration.
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4.3 Methodology and Datasets

It is our goal for our measurements to represent a range of network deployments

that vary both by signal quality and offered load. We focus on the networks of the

four major U.S. providers: AT&T, Sprint, T-Mobile, and Verizon. In this section, we

first describe our custom measurement suite and our measurement methodology. We

then describe the details of our collected datasets.

Location Date (2019) # LTE Packets Type Carriers⇤

New Mexico
Tribal_1 May 28 3.18 Million Tribal, Rural V,A,T,S
Tribal_2 May 29 1.38 Million Tribal, Rural V,T
Tribal_3 May 28 2.03 Million Tribal, Rural V,A,T,S
Tribal_4 May 30 2.16 Million Tribal, Rural V,A,T,S
Tribal_5 May 30 2.27 Million Tribal, Rural V,A,T,S
Tribal_6 May 31 2.33 Million Tribal, Rural V,A,T,S
Rural_1 May 31 1.26 Million Non-Tribal, Rural V,T
Rural_2 Jun 01 2.83 Million Non-Tribal, Rural V,A,T,S

San Diego, CA
Urban_1_Cong Sep 22 2.25 Million Urban, Congested V,A,T,S
Urban_1_Base Sep 28 1.92 Million Urban, Baseline V,A,T,S
Urban_2_Cong Sep 29 2.51 Million Urban, Congested V,A,T,S
Urban_2_Base Sep 30 1.97 Million Urban, Baseline V,A,T,S
Urban_3_Cong Sep 21 2.65 Million Urban, Congested V,A,T,S
Urban_3_Base Sep 30 2.13 Million Urban, Baseline V,A,T,S

San Francisco, CA
Urban_4_Cong Sep 25 2.18 Million Urban, Congested V,A,T,S
Urban_4_Base Sep 26 2.08 Million Urban, Baseline V,A,T,S

Table 4.2: Summary of Datasets
⇤This column lists the mobile carriers present in each data set (some areas had no coverage for

particular network operators). V: Verizon, A:AT&T, T:T-Mobile, S: Sprint.

4.3.1 Measurement Suite

We collect measurements from which we can derive QoS and QoE in various

locations in which we expect varying LTE performance. The capture of disparate
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performance will give us a broad picture of QoS and QoE and the opportunity to

study performance in different population densities (urban vs. rural vs. tribal reser-

vations) and usage scenarios (congested vs. typical usage). To collect these mea-

surements, we use a custom-built measurement suite that captures both network-

and application-level metrics. For video, application-level metrics are measured by

streaming YouTube videos; we choose YouTube because it has an extensive mobile

reach of 88%, more than 3.5⇥ that of its next best competitor [107]. For Web brows-

ing, we utilize the Tranco ranking list as it addresses the stability and responsiveness

issues faced by other Website ranking services [36].

We run our measurement suite on Lenovo ThinkPad W550s laptops, each tethered

to its own Motorola G7 Power (Android 9) via USB to measure cellular performance.

The cellular plans on all our cellular user equipment (UE) have unlimited hot-spot

data enabled to effectively achieve the same level of performance as we would on

the mobile device. We run our measurement suite on laptops tethered to phones

as this configuration gives us the same application performance while facilitating

ease of programming and data extraction and achieving a higher level of unification

for various application-level measurements. We record instantaneous RSRP readings

from the UEs every second through the Network Monitor application [79].

To collect video QoE metrics, we run a 3-minute clip of a Looney Tunes video

three times across each of the four LTE providers at each location; we exclude from

our results the sessions that experienced playback errors during execution. We chose

this particular video due to its mix of high and low-action scenes, which results

in variable bitrates for different segments in the video (typically, high-action scenes

have higher bitrate than low-action scenes). To infer video QoE, we collect the input

features (RSRP and throughput) synchronously on a separate device so as not to bias

the video streaming measurements. After testing multiple playback durations, we
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observed that a 3-minute window was adequate for the playback to reach steady-

state while long enough to capture rebuffering and resolution switches. To execute

this experiment, we first automate the loading and playback of the YouTube video

on the Chrome browser using Selenium [?]. The video resolution is set to auto.

Then we use YouTube’s iframe API [108] to capture playback events reported by the

video player. The API outputs a set of values that indicate player state (not started,

paused, playing, completed, buffering) using the getPlayerState() function. The API

also provides functions for accessing information about playtime and the remaining

buffer size. Similarly, we employ Selenium to automate Web page loading on the

Chromium browser to capture page load time measurements.

4.3.2 Description of Datasets

We collected 16 datasets from 12 locations across the Southwestern US Eight of

those were collected from rural locations with sparse cellular deployment. Six of the

eight locations were under the jurisdiction of American Indian Tribal sovereignty,

while two were from non-tribal rural regions. In the remaining text, we sometimes

use the word "rural" to refer to tribal and non-tribal rural areas. These eight collec-

tion points spanned 21 square miles in New Mexico and were collected for five days.

In addition, we collect another eight datasets from four urban locations in California.

For each urban location, we collect two datasets: one during a large event or gath-

ering, in which we expect cellular network congestion to occur (these datasets are

marked with _Cong) [90, 109]; and a second during typical operating conditions. We

call the latter dataset the baseline for that location (marked with _Base). Hence, our

traces are broadly classified into three categories: rural and tribal, congested urban,

and baseline urban. The details of each dataset are summarized in Table 10.2. In
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each location, we concurrently collected the complete traces on four major U.S. car-

riers (AT&T, Sprint, T-Mobile, and Verizon) using four separate, equivalent UEs, as

described in §4.3.1. The designation of each location as tribal, rural, or urban ("type"

column in Table 10.2) is based on information gathered from the Census Bureau [38].

We collect and analyze over 32.7 million LTE packets through these measurement

campaigns. A detailed overview of the datasets is provided in Chapter 2 (§2.1)(Santa

Fe, New Mexico; Suburbs, San Diego; San Francisco).

4.4 Network Characterization

In this section, we analyze network performance characteristics in each measure-

ment location, and by so doing, we attempt to determine whether any generalizations

based on network offered load exist. Note that one or more operators did not pro-

vide LTE coverage in specific locations, as indicated in Table 10.2. Our assessment

reveals several differences in network performance across region types and network

conditions (congested/uncongested).

4.4.1 Quality of Service Analysis

We evaluate the relationship between spatially and temporally varying network

conditions through four QoS metrics: RSRP, throughput, latency, and packet loss,

as described in §4.2.1. We analyze the mean and median values and present me-

dian results aggregated across all telecom providers at each location. In addition,

wherever applicable, we report performance deviations that fall beyond one stan-

dard deviation (68% confidence interval) because they may skew the distribution.

Stated otherwise, we separately report the performance of each telecom operator if
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a. RSRP (dBm) b. Throughput (Mbps)

c. Latency (ms) d. Packet loss rate (%)

Figure 4.1: Distribution of QoS metrics across different network conditions.

x  µ � s or x � µ + s, where x is the median performance value for the outlier

operator, µ and s are the mean and standard deviation of the entire distribution. In

the boxplots, the right and left edges of the box represent the first quartile (25th per-

centile) and third quartile (75th percentile), respectively, with the median line drawn

within the box. The whiskers capture 5th to 95th percentile values.

RSRP: We observe a wide range of RSRP values on all levels: between datasets,

within datasets, and between dataset types, as shown in Figure 4.1(a). The median

RSRP value across all rural and tribal locations is -118dBm. We observe that rural
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and tribal areas report 15.06% and 19.55% lower RSRP values than urban congested

and baseline urban locations, respectively.1 This result is consistent with reports

of limited LTE coverage in rural and tribal locations; these regions frequently have

significantly sparser LTE base station deployment and hence larger coverage areas

that lead to regions with lower signal quality. One notable exception is Tribal_4,

where the reported values are, on average, 12dBm higher than elsewhere in the rural

region. This is likely due to the relatively denser deployment of base stations in the

area; our wireless gear was physically closer to the eNodeBs (LTE base stations) that

served the region (verified through CellMapper [50]).

Throughput: Figure 4.1(b) compares throughput across all locations, averaged across

all providers in each location. We observe high variability in throughput distribu-

tions, ranging from less than 500 Kbps to about 30 Mbps. Congested urban mea-

surements report a median throughput of 1.51 Mbps, while rural and tribal regions

report 35% less median throughput, at 0.98 Mbps. Uncongested urban locations have

by far the best average performance.

We observe a few outliers in our analysis: AT&T reports 30⇥ and 26⇥ the me-

dian throughput values in Tribal_4 and Tribal_6, faring considerably better than its

competitors. In addition, Sprint performs 8⇥ better than the region’s median. In

Tribal_4, if we exclude the outlier (AT&T), the median value for the other operators

is 0.56 Mbps, which is 41% less than the worst-performing congested dataset, Ur-

ban_4_Cong (median: 0.95 Mbps). This is unexpected since: (1) Tribal_4 has denser

coverage, and (2) our measurement setup was close to all the connected eNodeBs

1The slight difference in RSRP median value between the congested urban and baseline results
may stem from multiple causes: a difference in weather conditions on measurement days, a change in
transmission power of the eNodeBs due to utilization, and the fact that the Urban_4_Base collection
location was approximately 30m away from the Urban_4_Cong location due to the closure of the
original collection venue.
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(this resulted in 12dBm higher RSRP than other rural locations). Similarly, if we

exclude the outliers in Tribal_6 (AT&T and Sprint), the median throughput is 43%

worse than Urban_4_Cong.

Our results demonstrate that, on average, the LTE networks we measured in rural

regions perform worse than congested urban networks. This performance difference,

and the absolute performance values, likely indicate the difference between having

a stable teleconferencing session and an unusable service (e.g., Zoom recommends

a minimum downstream bandwidth of 1.5 Mbps [110]). Urban baseline locations

register a median throughput of 10.92 Mbps. In comparison, congested locations

report 7⇥ less median throughput, while rural and tribal regions register 11⇥ lower

throughput than baseline urban locations.

Latency: Figure 4.1(c) shows the average latency, measured as round-trip time (RTT),

across all measurements in each location. Urban baseline datasets reveal a median

latency of 64 ms. At the same time, in the congested networks, the average RTT dou-

bles to a median value of 140 ms, verifying our expectation of network congestion.

Rural regions report a median latency of 193 ms, which translates to a 38% and 202%

increase in round trip times compared to congested and urban baseline datasets, re-

spectively. Notably, Tribal_4 has an average latency of 147 ms despite the proximity

of our measurement setup to the LTE base stations and a location geographically

closer to our ping server in Virginia than the locations in California. Reasons for this

extra latency are varied and may include a less direct and slower path out of this

region to a major Internet backbone. Overall, Tribal_2 and Urban_2_Cong exhibit the

widest variability in latency measurements.

Packet Loss: The average loss rate across providers is reported in Figure 4.1(d).

While we observe variability, a birds-eye view demonstrates that the baseline ur-
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a. Start-up delay (s) b. Video quality

c. Resolution switch (%) d. Rebuffering (%)

Figure 4.2: Distribution of QoE metrics across different network conditions.

ban locations benefit from marginal loss rates (median is 0.23%). We observe more

than 6⇥ higher median loss rates in the congested urban datasets, indicating heavy

congestion. As a group, the congested urban locations experience the second-best

performance (median loss rate is 1.56%), and rural networks experience the high-

est average loss rates. We observe an exceptionally high loss in Tribal_1, Tribal_2,

Tribal_3, and Tribal_5 (median of 2.53% across all four locations). A performance

outlier is Tribal_6; despite its comparable rural and tribal location, Tribal_6 reports a

much lower loss rate of 0.72%.
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Takeaway: Our analysis of QoS metrics reveals the wide gap in LTE performance

across different regions and network conditions. Our results illustrate that the rural

and tribal regions we study experience the poorest mobile broadband performance.

This performance is typically even worse than heavily congested urban networks.

This poor performance is consistent with prior findings [87, 111]. The chronic under-

provisioning of LTE networks in rural and tribal regions, due to both sparser deploy-

ment and some combination of less efficient and lower speed backhaul, implies mo-

bile broadband in these regions often cannot meet the minimum recommended QoS

required for applications such as video streaming and video chat. While this poor

Internet usability has a negative impact on residents, this impact has been grossly am-

plified during the shelter-in-place orders of the COVID-19 pandemic, when school-

ing, work, telemedicine, and other critical activities have been moved online [25, 26].

Our measurements indicate that in many of these rural locations, despite the pres-

ence of mobile broadband, the quality of those networks is often too poor to support

these now-essential video-based applications.

4.4.2 Video QoE Analysis

Next, we characterize key video QoE indicators in different network conditions

to reveal application-level performance differentials of video streaming. Similar

to §4.4.1, we report median values across all telecom providers unless there are sam-

ples that lie outside of one standard deviation (µ).

Start-up Delay: Figure 4.2(a) plots the start-up delay. The median start-up delay in

rural and tribal regions is 6.52s, while congested urban locations report 5.29s. Urban

baselines have the lowest reported delay at 0.7s (median). We also note that the rural

and tribal locations have far higher variability than congested datasets. For instance,
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the median range of start-up delay (i.e., the difference between the max and the min

values in a distribution) is 12.5s in these areas as opposed to 8.6s in congested net-

works. This behavior can be attributed to under-provisioned LTE networks in rural

and tribal regions that are sensitive to user demand, even during normal operating

hours, resulting in large fluctuations. This result is consistent with observations in

Figure 4.1(b); lower throughput coupled with higher packet loss would likely result

in the inconsistencies in the download time of the initial video segments. Baseline

urban offers the least variability of 3.7s. In Figure 4.1(b), we saw that the AT&T

network achieves higher throughput at Tribal_4 and Tribal_6. Consequently, we ob-

serve that video sessions in both Tribal_4 and Tribal_6 on the AT&T network have 3⇥

lower start-up delay than the other providers. We note that the start-up delay does

not convey any information about playback video resolution.

Video Quality: Figure 4.2(b) depicts the playback resolution of the YouTube video,

sampled at one-second granularity. We ensure that the video resolution is set to auto

during our measurements. As a result, playback resolution and resolution switches

are a direct result of network conditions and changes in congestion levels. While all

of the urban baseline locations indicate near full-HD (1080p) rendering of the video,

congested locations have a median resolution of 240p. One possible explanation

could be telecoms’ throttling of video quality as part of their congestion mitigation

schemes. Rural measurements show marginally better performance with a median

resolution of 360p but exhibit wider variability, ranging between 144p to 1080p. Video

sessions with 1080p in rural regions are associated with the AT&T network, consistent

with the results from Figure 4.1(b), where AT&T records distinctively higher records

throughput values.

Resolution Switching: Video resolution variation is synonymous with quality switches,
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a. Rural and tribal b. Congested urban c. Baseline urban

Figure 4.3: Cumulative distribution of buffer size across different network conditions.

a. Rural and tribal b. Congested urban c. Baseline urban

Figure 4.4: Page load times of Tranco top 25 websites.

which is often perceived as a QoE performance degradation [112]. Figure 4.2(c) rep-

resents the number of samples with a different resolution than the previous sample

as a percentage of total collected samples during the video session. We observe a

median value of 1.64% in rural regions, as opposed to 0.92% in congested urban

datasets. This value is nearly 6⇥ smaller for baseline urban datasets, with a median

value of 0.16%, compared to urban congested measurements. Frequent resolution

switches typically lead to lower user engagement [112]. This implies that the high
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percentage of switches in rural and tribal regions could lead to difficulty in user

engagement with video streaming services, as needed during remote learning, work-

at-home video conferences, and other vital applications.

Rebuffering: This metric represents the time the video stalls or rebuffers during the

playback expressed as a percentage of total playback time, shown in Figure 4.2(d).

There is a higher median rebuffering ratio of 2.68% in rural and tribal regions, fol-

lowed by congested urban regions at 1.85%. Baseline urban measurements report a

more than 5⇥ and 3⇥ lower rebuffering ratio than rural/tribal and congested urban,

respectively.

Buffer Size: Figure 4.3 shows the buffer size distribution captured during YouTube

streaming sessions. For ease of comprehension, we separate the result graphs into

three categories. Here, a greater amount of buffered content is better, allowing the

application to smooth performance despite varying jitter. Baseline measurements re-

port higher buffer levels with a median value of 44.3s (Figure 4.3(c)) while congested

datasets report 27.7s (Figure 4.3(b)), a 34% decrease from baseline measurements.

Rural regions have the lowest median buffer at 20.2s (Figure 4.3(a)), which is a re-

duction of 52% and 27% from baseline urban and congested urban measurements,

respectively.

Takeaway: Our analysis of QoE metrics indicates that user experience suffers due

to under-provisioned LTE networks in rural and tribal regions. The results reinforce

our findings in §4.4.1 that LTE networks in these regions are likely to fail to provide

a quality, or even usable, experience for video streaming. Unsurprisingly, rural net-

works underperform in most cases compared to congested LTE networks in urban

regions, implying that the worst-case experience in an urban network is likely still better

than the average case experience in a rural or tribal region. However, the extent of perfor-
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mance degradation in rural and tribal areas compared to other network conditions is

remarkable and noteworthy.

4.4.3 Page Load Time

Locations PLT Timeout Locations PLT Timeout Locations PLT Timeout

Tribal_ 1 16.9% Rural_1 66.1% Urban_3_Cong 17.3%
Tribal_2 51.6% Rural_2 27.3% Urban_3_Base 0.88%
Tribal_3 26.4% Urban_1_Cong 17.6% Urban_4_Cong 24.0%
Tribal_4 46.7% Urban_1_Base 0.0% Urban_4_Base 0.0%
Tribal_5 30.1% Urban_2_Cong 41.8% – –
Tribal_6 24.6% Urban_2_Base 0.0% – –

Table 4.3: Webpage Load Timeouts.

Web performance has long been crucial to the Internet ecosystem since a signif-

icant fraction of Internet content is consumed as Web pages. The end-user qual-

ity perception in interactive data services is dominated by Web page loading times;

the longer they wait, the lower the user satisfaction [113]. Studies have shown that

perceived time for users accessing the Web can be exceedingly magnified for actual

chronological time, thus degrading the perceived performance even further [114, 115].

Page load times are depicted in Figure 4.4. We bin the results into similar categories

as in Figure 4.3. From our evaluation, we learn that rural and tribal locations (shown

in Figure 4.4(a)) produce the slowest load times with a median value of 9.75 seconds.

This is 74% slower than the congested dataset (median value is 5.6 seconds) and 2.7⇥

lower than baseline urban measurements (median value is 2.67 seconds). Tribal_2

performs the worst in tribal and rural locations with a median load time of 13.08 sec-

onds, while Urban_2_Cong is the most under-performing dataset in congested urban

at 7.28 seconds. In baseline urban, all locations exhibit similar load times within a

margin of ±1 second difference. Our examination reveals a considerable fraction of
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Web pages fail to load within the timeout period of 30 seconds (shown in Table 4.3)

in rural, tribal, and congested urban regions. We observe a median timeout value

of 28.7% across tribal and rural areas, which is 38.7% higher than that reported in

congested urban (median value is 20.8%). Rural_1 logs the highest timeout percent-

age with over 66% of Web pages failing to load; Urban_2_Cong reports the highest

(41.8%) in the congested dataset. Urban baseline locations have faster load times and

little to no timeouts for Web pages. Similar to section 4.4.2, we observe that the Web

browsing experience suffers more in rural and tribal regions than in urban regions

(with or without atypical network utilization).

4.5 Related Work

Manual measurements are a common approach to calculating cellular coverage [116].

This includes methods such as war-driving [51], war-walking [117], and aerial sys-

tems [35], which usually require high operational expenditure. Mobile analytics

companies [33, 118] contribute to measurement collection by crowd-sourcing mea-

surements directly from end-user devices via standalone mobile apps [33, 119] or

measurement SDKs [120, 121, 119] integrated into partner apps. However, these are

limited in scope because crowd-sourced measurements do not have spatial unifor-

mity. As a result, some of the desired measurement locations may not exist in these

databases (possibly due to a lack of adoption of the application or SDK by the local

community). Further, outsourced databases typically carry a hefty licensing fee or

are otherwise restricted [122]. While several public datasets consist of Internet per-

formance measurements (e.g. [123, 121]), there is a lack of datasets that represent the

variability in mobile broadband performance due to sparse deployments or network

congestion. Many mobile network datasets focus on coverage [33, 34]; the FCC an-
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nually publishes its broadband report [6]. Unfortunately, these broadband reports

are widely inaccurate [9]. Further, we have shown that using coverage maps alone

is inadequate to infer actual usability. While several prior studies [124, 125] have fo-

cused on LTE performance analysis and traffic characterization, these studies do not

compare performance across differing population densities and region types.

4.6 Conclusion

Online learning, work-at-home, telemedicine, and other applications that have al-

ready experienced regular usage have exploded in the post-COVID-19 world, transi-

tioning from conveniences to critical everyday applications. Web browsing and video

streaming are necessary components of these applications, so studying network per-

formance for users in all regions is crucial. Through extensive measurements, we

have revealed the sharp contrast in cellular performance between rural, tribal, and

urban locations; for instance, video QoE is at least 10⇥ worse, and Web browsing is

more than 2⇥ worse in the rural and tribal regions we studied than in urban locations

with the typical cellular load. While prior work and past surveys have reached sim-

ilar conclusions, our study demonstrates and quantifies the extent to which network

performance lags in rural and tribal communities. This suggests that users in under-

served regions are far more likely to drop out of virtual engagement such as online

lectures and e-learning. User disengagement will, unfortunately, lead directly to a

greater digital gap than exists today [25, 26]. Broadband deployments that address

these access and coverage quality gaps are urgently needed. In the following chapter,

we discuss the significant limitations of coverage maps that offer a binary assessment

of service quality. We discuss our recommendations for improved cellular coverage

measurements based on our observations.
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A Tale of Three Datasets: Towards

Characterizing Mobile Broadband

Access in the United States

5.1 Introduction

Affordable, quality Internet access is critical for full participation in the 21st-

century economy, education system, and government [126]. Mobile broadband can be

achieved through commercial Long-Term Evolution (LTE) cellular networks, which

are a proven means of expanding this access [18], but are often concentrated in ur-

ban areas and leave economically marginalized and sparsely populated areas under-

served [6]. The U.S. Federal Communications Commission (FCC) incentivizes LTE

operators serving rural areas [29, 30] and maintains transparency by releasing maps

from each operator showing geographic areas of coverage [46]. Recently third parties

have challenged the veracity of these maps, claiming these maps over-represent true

coverage, and thus may discourage much-needed investments.
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Most of these claims, however, are either focused on limited areas where a few

dedicated researchers can collect controlled coverage measurements (e.g., through

wardriving) or are mainly qualitative in nature [31, 10, 32]. As dependence on mobile

broadband connectivity increases, especially in the face of the COVID-19 pandemic, mecha-

nisms that quantitatively validate FCC coverage datasets at scale are becoming acutely neces-

sary to evaluate and direct resources in Internet access deployment efforts [83, 127]. This is

an issue of technology and technology policy, with equity and fairness implications

for society.

An increasingly widespread approach to measuring coverage at scale is through

crowdsourcing, wherein users of the LTE network contribute to coverage measure-

ments. The FCC has recently advocated for crowdsourcing to validate coverage data

reported by operators [128]. In this context, we take a data-driven, empirical ap-

proach to this work, comparing coverage from a representative crowdsourced dataset

with the FCC data. More specifically, our analysis is guided by the following ques-

tions: (i) How consistent are existing LTE coverage datasets, ii) where and how do

their coverage estimations differ, and what trends are present?

We specifically consider a crowdsourced coverage estimate from Skyhook, a com-

mercial location service provider that uses various positioning tools to offer precise

geolocation. We select Skyhook because it crowdsources cellular coverage measure-

ments from end-user applications that subscribe to its location services. Such inci-

dental crowdsourcing can potentially provide richer coverage data than a voluntary

form of crowdsourcing where a user has to commit to contributing coverage data

explicitly. We examine this by comparing the Skyhook measurements with those of

OpenCellID, an open but voluntary crowdsourced dataset [129]. As will be shown

in Section 5.3.1, we find that the density of the crowdsourced datasets varies signif-

icantly by the data collection methodology, especially in rural areas. In the regions

74



A Tale of Three Datasets Chapter 5

we studied, incidental crowdsourcing (Skyhook) gathered up to 11.1x more cell IDs

than voluntary crowdsourcing (OpenCellID).

Using Skyhook as an extensive crowdsourced dataset, we quantify how widely

and where the crowdsourced coverage data differs from the FCC data. We specifi-

cally focus on the state of New Mexico1, selected for its mix of demographics, diverse

geographic landscape, and our partnership with community stakeholders within the

state. We compare coverage at the level of census blocks2 which are further grouped

into urban, rural, and tribal3 categories. We find that the FCC and Skyhook LTE

datasets disagree as great as 15% in rural census blocks, with the data from FCC

claiming higher coverage than Skyhook. A significant concern in interpreting this

comparison is accounting for coverage disagreement due to the lack of data points in

the crowdsourced dataset. To confirm the availability of users to provide data points,

we check for the presence of alternate cellular technologies (e.g., 2G or 3G) within

these census blocks and observe a significant number (up to 9% in tribal, rural ar-

eas) where such alternates are present, providing evidence that users do visit those

blocks but cannot access LTE. These results, similar to a recent study on fixed broad-

band [131], suggest a need for incorporating mechanisms to validate the operator-

submitted data into the FCC’s LTE access measurement methodology, especially in

rural and tribal areas.

Finally, we compare both FCC and Skyhook coverage maps to our controlled cov-

erage measurements collected from a northern section of New Mexico. Interestingly,

we find that both FCC and Skyhook datasets report higher coverage relative to our

1Our methodology is not specific to New Mexico and can be easily extended to other regions in
the US

2We use the FCC methodology wherein a census block is considered covered if the centroid is
covered [130]

3Tribal areas that have consistently experienced the lowest broadband coverage rates in the United
States for the past decade [6]
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Data Set Points of Collection Format Methodology

FCC Polygon Shapefile Operator-reported
overlay with Form 477

Skyhook Cell signal CSV Incidental
point crowdsourcing

Author controlled Cell signal CSV Wardriving
measurements point

Table 5.1: Summary of coverage data sets.

controlled measurements, with the former showing a higher degree (up to 26.7%)

of over-reporting than the latter. Understanding the causes of these inconsistencies

is crucial for effectively using crowdsourced data to measure LTE coverage, espe-

cially as crowdsourcing is increasingly viewed as preferable to provider reports. We

conclude with recommendations for improving LTE coverage measurements, whose

importance has only increased in the COVID-19 era of performing work and school

from home.

5.2 Background and Datasets

In this section, we first provide an overview of the LTE network architecture. This

is followed by a description of the LTE coverage datasets compared in our analysis.

These datasets are summarized in Table 5.1. We also note the limitations associated

with each data collection methodology.

5.2.1 LTE Network Architecture

Internet access in an LTE network is available through base stations (known as

eNodeBs) operated by the network provider. The user equipment (UE), such as

smartphones, tablets, or LTE modems, connects to the eNodeB over the radio link.
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Figure 5.1: LTE operators by census block
coverage based on FCC data.

Figure 5.2: Map of author wardriving
areas in New Mexico.

The eNodeB is connected to a centralized cellular core called the Evolved Packet

Core (EPC). This connection is typically through a wired link forming a middle-mile

connection. The EPC consists of several network elements, including a Packet Data

Network Gateway (PGW), the connecting node between an end-user device and the

public Internet. Thus, LTE broadband access depends on multiple factors, including

radio coverage, middle-mile capacity, and interconnection links with other networks

(e.g., transit providers, content providers) on the public Internet. However, this ar-

ticle focuses on understanding the last-mile LTE connectivity characterized by the

radio coverage of the eNodeB.

An eNodeB controls a single cell site and consists of several radio transceivers

or cells mounted on a raised structure such as a mast or a tower. The radio cells

use directional antennas, where each antenna provides coverage in a smaller geo-

graphical area using one frequency band. The radio cells can be identified through a

globally unique number called cell identifier (or cell ID), which is also visible to an

end-user device in the cell range. The cell ID enables the aggregation of connectivity

and signal strength information from multiple UEs connected to the same cell, which
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can then be used to estimate the geolocation of a cell along with its coverage (see

Section 5.2.3).

5.2.2 FCC Dataset

The FCC LTE broadband dataset consists of coverage maps in shapefile format

that depict geospatial LTE network deployment for each cellular operator in the US.

The FCC compiles this dataset semi-annually from operators through Form 477. Ev-

ery operator that owns cellular network facilities must participate in this data col-

lection. The operators submit shapefiles containing detailed network information in

the form of geo-polygons, the frequency band used in the polygon, and the mini-

mum advertised upload and download speeds. The methodology used for obtaining

these polygons is proprietary to each operator. Ultimately, the FCC publishes only a

coverage map representing coverage as a binary indicator: cellular service is either

available or not in any location.

We use the binary coverage shapefiles, available on the FCC website from June

20194. Figure 5.1 shows the eight LTE network operators in the state of New Mex-

ico (NM) and the percentage of total census blocks in NM covered by each operator.

Note that we use one of the FCC methodologies to report mobile broadband access,

wherein a census block is considered covered if the centroid of the census block is

covered [130]. In this chapter, we limit our analysis to the top four cellular opera-

tors due to their significantly greater prevalence in NM; these operators are also the

leading four cellular operators in the United States more broadly.

Limitations: These coverage maps are generated using predictive models that are

4At the time of this analysis, data from December 2019 was also available on the FCC website.
However, we use data from June 2019 as the other two datasets in our analysis are collected around
this period.
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proprietary to the operator [9] and not generally reproducible. Furthermore, the

publicly available dataset consists of binary coverage, and lacks any performance-

related data.5

5.2.3 Skyhook Dataset

Skyhook is a location service provider that uses a variety of positioning tools, in-

cluding a database of cell locations, to offer precise geolocation to subscribed appli-

cations [34]. Through apps that subscribe to Skyhook’s location services, user devices

report network information gathered into anonymous logs and used to improve the

localization service further. Through a data access agreement, we can view the cell

location database consisting of a list of unique cell IDs along with the cell technology

(e.g., 3G vs. LTE), estimated location, and the estimated coverage. The database was

initially constructed through extensive wardriving but is now managed and updated

using measurements gathered by devices using the Skyhook API for localization. The

device measurements with the same cell ID are combined to estimate the cell location

and coverage in the following manner:

Cell location estimation: A grid-based methodology similar to that proposed by

Nurmi et al. [132] is used to estimate the cell tower location. Specifically, Skyhook

divides the geographic area into 7 m squares and groups measurements in the same

square to obtain a central measure of the square’s signal strength. This is done to

reduce the bias due to large numbers of measurements from the same area (e.g., a

popular gathering place). A weighted signal strength average is then used to estimate

the cell location.

Estimation of cell coverage radius: Skyhook also estimates the cell’s coverage radius

5The FCC has only recently (beginning December 2019) started giving speed data along with cov-
erage information.
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using a proprietary method based on the path-loss gradient [133]. The path-loss gra-

dient approximates how the wireless signal attenuates as a function of the distance

from the transmitter (radio cell in this case). The value of the path-loss gradient

depends on several factors such as environment (foliage, buildings), geographic to-

pography, and cell signal frequency. Skyhook estimates the path-loss gradient using

field observations of cell signal strength readings and their distributed geographic lo-

cations. Ideally, the signal attenuation varies based on the direction and the distance

from the cell. However, to reduce the complexity of coverage estimation, Skyhook’s

cell coverage estimation heuristic calculates only one path-loss gradient for a single

cell. The path-loss gradient is then used in parameterized equations to estimate the

cell coverage radius. The parameters in these equations have been determined with

careful research and testing over more than ten years.

The cell location database is regularly updated by recalculating cell location and

coverage radius using the new device measurements collected since the last update.

For our analysis, we use the cell location database last updated on June 10, 2019.

Limitations: Since database entries are crowdsourced when the device passes within

range of a cell, this dataset is more comprehensive in population centers and high-

ways where people often occupy. If there are too few measurements overall, or if

measurements are primarily sourced from the same grid section, then the cell loca-

tion estimate can be inaccurate.

5.2.4 OpenCellID Dataset

Unwired Lab’s OpenCellID6 project provides a publicly available dataset of cell

IDs along with their estimated location. The dataset is derived from crowdsourced

6OpenCellID Project is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.
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UE signal strength measurements similar to Skyhook. However, in this case, the UE

measurements come from users voluntarily installing the OpenCellID application on

their smartphone [129] and manually choosing what data to upload. We differentiate

this voluntary crowdsourcing method of data collection from Skyhook’s incidental

crowdsourcing method, where users of the Skyhook API contribute to the data by

default.

Our analysis shows OpenCellID’s collection methodology leads to a sparser dataset

(see Section 5.3.1).

Another difference between OpenCellID and Skyhook is the methodology used

to estimate the cell location. OpenCellID simply assigns the average location of all

signal strength measurements corresponding to a single cell location as the estimated

cell location. This makes it much more susceptible to error if the measurements are

not uniformly distributed. Also, unlike Skyhook, OpenCellID does not estimate the

coverage radius of the cells.

Cell information is updated whenever users pass by and gather new information.

To increase data accuracy in our OpenCellID analysis, we select only cells that have

been updated since January 1, 2018. A single sample represents a device encounter-

ing a cell for a single continuous interaction. Even in large counties, almost 40% of

all cells have fewer than ten samples. The median number of samples for all large,

small, and micro counties considered together are 9, 6, and 4, but standard deviations

are 78.3, 94.1, and 90.2. This significant standard deviation suggests extreme outliers

in OpenCellID’s sampling methodology.
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5.2.5 Targeted Measurement Campaign

To complement these datasets, we performed a targeted measurement campaign

collecting coverage information through 120 miles of Rio Arriba County in New

Mexico for five days beginning May 28, 2019. Figure 5.2 shows the locations of

ground measurements and the four descriptive area labels we use for this analysis.

The North area measurements were taken on highways passing primarily through

the national forest. The Pueblo area measurements were taken from highways within

tribal jurisdiction boundaries. In Santa Clara Pueblo, tribal leadership permitted us

to collect additional measurements in residential zones. Finally, the Santa Fe area

consists of highway measurements between the pueblos and downtown Santa Fe.

While limited in scale, these active measurements provide a meaningful comparison

point for coverage and user experience. As described in Section 5.1, we selected

these areas of New Mexico for their mix of tribal and non-tribal demographics; tribal

lands tend to have the highest coverage over-statements and the most limited cellular

availability within the United States [6].

Our measurements consist of service state and signal strength readings recorded

on four Motorola G7 Power (XT1955-5) phones running Android Pie (9.0.0). Service

State is a discrete variable indicating whether the phone is connected to a cell. Mea-

surements were collected using the Network Monitor application [79]. An external

GlobalSat BU-353-S4 GPS connected to an Ubuntu Lenovo ThinkPad laptop gathered

geolocation tags that were matched to network measurements by timestamp. Each

phone was outfitted with a SIM card from one of the four top cellular operators in

the area: Verizon, T-Mobile, AT&T, and Sprint. The phones recorded service state

and signal strength every 10 seconds while driving at highway speeds (between 40

and 65 miles per hour) in most places and less than 10 miles per hour in residential
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County
classification

Region County Population
density (per sq. mile)

Skyhook OpenCellID Common
CIDsName CIDs (#) % Overlap CIDs (#) % Overlap CIDs

Western Los Angeles, CA 2,490.3 133,484 28% 39,875 92% 36,816
Large Metro Central Denver, CO 4,683.0 11,061 24% 3,136 86% 2,689

Eastern Fulton, GA 1,994.0 27,809 22% 7,225 86% 6,194

Western Imperial, CA 43.5 1,818 17% 336 93% 311
Small Metro Central Doña Ana, NM 57.1 1,870 32% 663 89% 592

Eastern Bibb, GA 613.0 1,953 21% 464 89% 413

Western Tehama, CA 21.7 733 17% 158 80% 126
Micropolitan Central Rio Arriba, NM 6.7 333 8% 30 87% 26

Eastern Pierce, GA 61.3 164 9% 21 67% 14

Table 5.2: Characteristics and cell ID (CID) counts in selected counties.

areas (Santa Clara Pueblo).

Limitations: Our wardriving campaign was intensive in terms of human effort, eco-

nomic cost, and time, making it difficult to scale. The dataset does not capture any

temporal variations in coverage as the measurements were collected over a short

time. It is possible that driving speed or device configuration affects the measure-

ments, e.g., indicating no coverage when a stationary measurement might have de-

tected coverage [134]. We have no evidence that this occurred, but it might warrant

some additional investigation.

5.3 Analysis

In this section, we first evaluate Skyhook as a representative crowdsourced dataset

by comparing it with a popular voluntary crowdsourced data from OpenCellID [129].

This is followed by comparing coverage across the FCC, Skyhook, and our wardriving

measurement data. Our comparison is guided by the following questions: (i) what

is the degree of coverage agreement across the datasets, ii) where and how do their

coverage estimations differ?
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Figure 5.3: CDF of cell updates in Skyhook (S) and OpenCellID (O).

5.3.1 Comparison of Crowdsourced Datasets

We compare the Skyhook dataset with a publicly available crowdsourced dataset

– OpenCellID. Unwired Lab’s OpenCellID7 project provides a publicly available

dataset of cell IDs and their estimated location. The dataset is derived from crowd-

sourced UE signal strength measurements similar to Skyhook. However, in this case,

the UE measurements come from users voluntarily installing the OpenCellID appli-

cation on their smartphone [129] and manually choosing what data to upload. We

differentiate this voluntary crowdsourcing method of data collection from Skyhook’s

incidental crowdsourcing method, where users of the Skyhook API contribute to the

data by default. We specifically compare the number of unique LTE cells and the

recentness of the measurements in both datasets. We consider each of these factors

to contribute to the overall density of the dataset.

methodology: While our coverage comparison will be focused on New Mexico, we

analyze our selected crowdsourced data more broadly by considering these datasets

7OpenCellID Project is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.
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within a set of counties of differing population densities across the United States.

The counties are selected from three areas of the United States: Western (California),

Central (New Mexico and Colorado), and Eastern (Georgia). Within each region, we

consider three different kinds of counties as defined by the National Center for Health

Statistics’ 2013 Urban-Rural Classification Guide [135]. These are: (i) large metropolitan

(large), which contain a population of at least one million and a principle city; (ii)

small metropolitan (small), which contain a population of less than 250,000; and (iii)

micropolitan (micro), which must have at least one urban cluster of at least 10,000, but

a total population of less than 50,000. This enables us to study population density

and geographic region differences for the crowdsourced datasets. We select three

counties of each population category, for a total of nine counties, to compare these

two datasets. We describe these counties in Table 5.2. For each county, we show

the 2018 population density estimated from the US Census Bureau’s 2010 census

records [136]. We first count the unique cell IDs in both datasets for each county, as

shown in Table 5.2. The “% Overlap" column in Table 5.2 shows the percentage of

each dataset’s cell IDs that also appear in the other dataset, and the “Common CIDs"

column shows the exact number of common cell IDs.

Results: Overall, Skyhook reports a greater number of cells (2.8x - 11.1x) for all coun-

ties. The difference is particularly pronounced in micro counties. This suggests that

relying on volunteers to download an application and offer network measurements

may not be the most accurate method for assessing LTE coverage in rural areas. Fur-

thermore, Skyhook includes a majority of the cells that appear in OpenCellID.

We consider how recently each cell ID record was updated with a new measure-

ment. Figure 5.3 shows the CDF of the latest measurement date for cells in both the

datasets, where cells are split into those located in urban and rural census blocks.

Almost 60% of the cells in Skyhook were last updated in June 2019, but the most re-
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Census
block type

Total census
blocks

Verizon T-Mobile AT&T Sprint
FCC Skyhook FCC Skyhook FCC Skyhook FCC Skyhook

Non-Tribal Rural 93,680 89% 77% 94% 86% 85% 79% 39% 49%
Non-Tribal Urban 41,872 100% 100% 100% 100% 99% 99% 96% 99%
Tribal Rural 30,588 93% 80% 92% 63% 78% 73% 27% 41%
Tribal Urban 2,469 100% 99% 95% 94% 93% 94% 75% 88%
All 168,609 93% 84% 95% 85% 88% 83% 52% 61%

Table 5.3: Percentage of total census blocks covered according to FCC and Skyhook.

Block type Total blocks Verizon T-Mobile AT&T Sprint

Non-Tribal Rural 93,680 14,013 9,025 8,705 1,355
Non-Tribal Urban 41,872 0 0 213 25
Tribal Rural 30,588 5,109 9,150 3,004 230
Tribal Urban 2,469 4 14 4 0

Table 5.4: Number of census blocks where there is coverage according to FCC but
no coverage according to Skyhook.

cent update in OpenCellID was in February 2019. Furthermore, cells in rural census

blocks were updated less recently than urban census blocks in OpenCellID, while

the difference is negligible in the Skyhook dataset. This suggests that the Skyhook

dataset is updated more regularly than OpenCellID, thus making it more likely to

represent any changes in the network infrastructure.

5.3.2 Comparison of Coverage

Coverage comparison between the FCC and Skyhook

We first compare a coverage shapefile generated from Skyhook cell locations and

estimated coverage ranges with the FCC map for each operator.

Methodology: We consider coverage at the census block level for this comparison. In

addition to reporting coverage shapefiles, the FCC reports coverage at a census block

level and considers a census block as covered if the centroid of the census block falls

within a covered region [130]. Using Skyhook’s estimated coverage, we generate a

similar census block level coverage map per operator. To do so, we first obtain the
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coverage shapefile for each operator using a cell’s estimated location and coverage

radius. Then we use the FCC centroid methodology to generate the Skyhook LTE

coverage map at the census block level. We use the Python GeoPandas 0.8.2 library

for the associated spatial operations [137]. We group census blocks into four cate-

gories: Non-Tribal Urban, Non-Tribal Rural, Tribal Urban, and Tribal Rural. This is

done to explore whether the degree of agreement of the two datasets varies across

these dimensions. We use the US Census Bureau’s classification of urban and rural

blocks and its boundary definitions of tribal jurisdiction for this categorization [138].

In this analysis, we consider census blocks as tribal if they overlap with tribal bound-

aries. We varied the tribal labeling schemes, such as classifying a census block tribal

if the centroid of the block is within a tribal boundary. However, the results remain

qualitatively similar and do not impact the findings.

Results: Table 5.3 shows the percentage of total census blocks covered by each cellu-

lar operator, according to the FCC and Skyhook data, broken down by census block

type. Among the four operators, T-Mobile covers the greatest number of census

blocks based on both FCC and Skyhook data, while Sprint covers the fewest. All

four cellular operators have relatively higher coverage for tribal and non-tribal urban

census blocks. However, all operators except Verizon offer their lowest coverage in

tribal, rural areas. For some operators, the differences between non-tribal rural and

tribal rural are as great as 23% (based on Skyhook data) and 11% (based on FCC

data).

The extent of LTE coverage differs between the two datasets. For three out of four

providers, Skyhook shows lower coverage than the FCC, particularly in the rural

census blocks. For instance, the FCC T-Mobile data shows coverage in 92% of tribal

and rural blocks, whereas Skyhook shows coverage in only 63% of such blocks. On

the other hand, Skyhook shows more census blocks covered than the FCC for Sprint.
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a. Verizon b. Sprint

Figure 5.4: Comparison of LTE coverage maps of New Mexico. Yellow blocks are
covered in the FCC map but not in Skyhook; purple blocks are covered in the Sky-
hook map but not the FCC. Green blocks are covered in both, and pink blocks are
covered in neither.

The higher coverage in the case of Sprint could have been due to multiple reasons,

including (i) there are differences in the propagation models used by Skyhook and

Sprint to estimate coverage, with the former’s models being more generous than

the latter’s, and (ii) the Skyhook data is collected across time, and Sprint may have

discontinued or temporarily disabled some of the cells, which is challenging to detect

from the crowdsourced data.

Figure 5.4 visually compares the LTE coverage maps from the FCC and the Sky-

hook datasets for Verizon and Sprint. We more deeply examine the discrepancy

mapped in yellow in Figure 5.4(a). Table 5.4 shows the number of census blocks

with coverage according to the FCC but none according to Skyhook for each oper-

ator. Coverage claims in both tribal and non-tribal rural census blocks disagree the

most. The number of such blocks are particularly high for Verizon (19, 126 overall)

and T-Mobile (18, 189 overall). There are two possible reasons for this disagreement:
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Block type Verizon T-Mobile AT&T Sprint

Non-Tribal Rural 528 (1%) 2,575 (3%) 5,342 (6%) 19 (<1%)
Non-Tribal Urban 0 (0%) 0 (0%) 213 (1%) 0 (0%)
Tribal Rural 2,655 (9%) 2,565 (8%) 2,166 (7%) 0 (0%)
Tribal Urban 0 (0%) 0 (0%) 4 (<1%) 0 (0%)

Table 5.5: Number of census blocks with LTE coverage according to the FCC, but
only 3G coverage according to Skyhook. The numbers in parenthesis report the
same data as a percentage of total census blocks of the corresponding type.

network operators lack adequate infrastructure in rural areas but tend to overesti-

mate coverage while reporting it to FCC, or Skyhook is missing data points from

rural census blocks where fewer people carry UEs/ The latter case will lead to either

some LTE cells not being detected or an inaccurate characterization of cell coverage

due to fewer measurements.

To understand which of these potential reasons for disagreement is more likely,

we check whether Skyhook shows 3G coverage for these census blocks (where the

FCC reports LTE coverage but Skyhook does not). If Skyhook reports 3G coverage in

these blocks, this suggests that users may have contributed to the Skyhook dataset in

these census blocks. Therefore, LTE coverage would have been detected if it existed.

Note that a more accurate way would have been to directly consider the location of

end-user measurements connected using 3G technology and analyze whether they

fall within LTE coverage areas in the FCC data. However, we did not have access to

these end-user measurements due to Skyhook’s privacy policy. Instead, we consider

the 3G coverage maps as a reasonable approximation for our analysis and generate

a 3G coverage map at the census block level for these areas, in the same manner

described previously. The number of census blocks that show only 3G coverage

according to Skyhook is presented in Table 5.5. We observe a significant number

of census blocks where Skyhook detects 3G coverage, indicating that the FCC LTE

coverage claims may be overstated in these areas. The number of such blocks is
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greater for tribal, rural areas (up to 9%), thus indicating a higher mismatch of the

two datasets in tribal, rural areas.

Active measurements compared to FCC and Skyhook coverage

In this section, we compare our active measurements with the coverage maps from

the FCC and Skyhook described in Section 5.3.2. We focus now on the geographic

region around Santa Clara Pueblo, which lies north of Santa Fe (see Figure 5.2), a

region with a mix of urban, rural, and tribal population blocks.

Methodology: We use the Service State readings collected in our measurements for

this analysis (see Section 5.2.5). We also collected information about the connected

cell’s technology (e.g., LTE) and the geolocation of the measurements. This informa-

tion is used to infer whether LTE coverage exists at a location. We consider LTE to be

available if the Service State shows IN_SERVICE to indicate an active connection and if

the associated cell is an LTE cell. We term this the active LTE coverage. We then com-

pare the FCC and Skyhook coverage with the active LTE coverage to see whether the

datasets agree. Note that we use the coverage shapefiles for Skyhook and the FCC in

this comparison instead of the census block centroid approach in Section 5.3.2. This

allows us to compare coverage more precisely for a location, especially if a census

block is only partially covered.

Results: Table 5.10 shows the confusion matrices that compare active LTE coverage

with reported coverage from the FCC and Skyhook maps. Both maps show coverage

at locations where our measurements did not. In the case of Verizon, 81% of the

measurements with no coverage are from locations reported as covered by the FCC.

This over-reporting is lowest for Sprint and highest for T-Mobile.

We also observe significant disagreement (up to 79%) between Skyhook coverage

and our measurements. Two possibilities may cause this: i) lack in Skyhook UE
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Active Total FCC Skyhook
NC C NC C

No Coverage (NC) 266 19% 81% 32% 68%
Coverage (C) 1,440 0% 100% 5% 95%

Table 5.6: Verizon

Active Total FCC Skyhook
NC C NC C

No Coverage (NC) 324 6% 94% 21% 79%
Coverage (C) 1,361 0% 100% 5% 95%

Table 5.7: T-Mobile

Active Total FCC Skyhook
NC C NC C

No Coverage (NC) 568 25% 75% 53% 48%
Coverage (C) 1,095 2% 98% 7% 93%

Table 5.8: AT&T

Active Total FCC Skyhook
NC C NC C

No Coverage (NC) 231 96% 4% 99% 2%
Coverage (C) 1,122 21% 79% 20% 80%

Table 5.9: Sprint

Table 5.10: Confusion matrices comparing active measurement coverage with FCC
and Skyhook. Total denotes the number of active measurements in each category.

signal strength readings available for cell location and coverage radius estimation,

or ii) error in the cell propagation model itself, possibly due to variations in the

environmental conditions such as the terrain. In either case, Skyhook agrees better

with our measurements than the FCC in reporting areas with no LTE coverage. E.g.,

in the case of AT&T, 75% of our measurements with no LTE coverage belong to areas

reported as covered by the FCC as compared to 48% by Skyhook.
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5.4 Recommendations

This section discusses some of the implications of our experience collecting and

analyzing coverage data, recommendations based on our findings, and directions for

future work.

Recommendations for the FCC: Our findings make a case for including mecha-

nisms that validate ISP-reported coverage data, especially in rural and tribal regions.

Given the scale of cellular networks, crowdsourcing coverage measurements is a vi-

able approach to validate access as opposed to controlled measurements. Within

crowdsourcing, we suggest leveraging incidental rather than voluntary approaches,

possibly working with third-party services that collect network measurements as

part of their service process (as in the case of Skyhook).

In addition, crowdsourcing alone may not be sufficient for determining coverage

in some cases. Even with the more complete datasets provided through inciden-

tal crowdsourcing, rural areas tended to receive significantly fewer measurements

per tower. In such cases, mechanisms need to be developed to determine areas of

greatest disagreement using sparse crowdsourced datasets. Resources can then tar-

get data collection in these areas instead of a blanket approach measuring coverage

everywhere.

Recommendations for crowdsourced data collection: We find some shortcom-

ings in the existing crowdsourced datasets. First, existing datasets only report areas

with favorable coverage, i.e., areas where coverage is observed. This makes it chal-

lenging to distinguish areas lacking coverage from areas where no measurements

were gathered. Recording areas that lack a usable signal can enable more decisive

conclusions from crowdsourced data.

Second, we note that even crowdsourced datasets are prone to overestimating
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coverage potentially due to errors in cell location and coverage estimation. Re-

search efforts that effectively utilize the knowledge of cellular network design are

needed for the accurate characterization of coverage from crowdsourced measure-

ments. For instance, existing cell location estimation techniques localize cells inde-

pendently (see Section 5.2.3) and are prone to errors when there are few end-user

measurements [139]. Instead, one can utilize the fact that a single physical tower in

an LTE network hosts multiple cells. Thus, algorithms that jointly localize cells for

whom the end-user measurements are in physical proximity may provide higher ac-

curacy even with fewer end-user measurements. Similarly, alternate data sources can

also be considered for localizing cell infrastructure, such as using geo-imagery data

to identify physical towers or directly obtaining infrastructure data from entities that

build and manage physical cell towers (usually different from cellular ISPs).

Measuring access beyond binary coverage: While this work focuses on under-

standing coverage, we recognize that a binary notion of coverage alone does not

necessarily indicate the existence of functional LTE connectivity. Various other fac-

tors can impact end-user experience in “covered" areas, such as low signal strength

or poor middle-mile connectivity. Thus, future coverage measurement efforts need to

augment coverage reports with performance measurements to provide models more

aligned with user experiences. Measuring such performance metrics poses a greater

challenge because end-user experience depends on many factors beyond just last-

mile link quality. We believe that efforts that lead to increased community awareness

(e.g., workshops in public libraries and community meetings) on the importance of

measuring mobile coverage are the way to tackle this problem.

We note that access and adoption are different, and issues beyond access might

also warrant measurement and consideration as accountability measures for opera-

tors. Our collection of ground truth data sets involved five days of driving through
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Rio Arriba County in northern New Mexico. In preparation for the trip, we worked

to obtain SIM cards that would enable us to access the networks of the four major

U.S. LTE operators. This was surprisingly difficult; for a month leading up to the

measurement campaign, we spent 24 hours in various operator kiosks and stores in

three states to obtain eight SIM cards (one for each major operator). At one of the

stores in Santa Fe, we encountered a woman who had to drive an hour from Las

Vegas, NM, to address some of the issues she was having with her mobile service

operator that were preventing her from using her data plan. While these anecdotal

experiences mirror the qualitative claims of coverage overestimation, they introduce a

new set of issues that need to be taken into account to reduce the barriers to Internet

access for rural communities effectively.

Finally, we observe that there are issues beyond availability that influence access

that might also warrant measurement and consideration as accountability measures

for operators. Our collection of ground truth data sets involved five days of driving

through Rio Arriba County in northern New Mexico. In preparation for the trip,

we worked to obtain SIM cards that would enable us to access the networks of the

four major U.S. LTE operators. This was surprisingly difficult; for a month leading

up to the measurement campaign, we spent 24 hours in various operator kiosks and

stores in three states to obtain eight SIM cards (one for each major operator). At

one of the stores in Santa Fe, we encountered a woman who had to drive an hour

from Las Vegas, NM, to address some of the issues she was having with her mobile

service operator that were preventing her from using her data plan. While these

anecdotal experiences mirror the qualitative claims of coverage overestimation, they

do introduce a new set of issues that need to be considered for
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5.5 Conclusion

In this chapter, we quantitatively examine the LTE coverage disagreement among

existing datasets collected using different methodologies. We find that existing datasets

display the most divergence when compared with each other in rural and tribal areas.

We discuss our findings for their implications for telecommunications policy. We also

identify several future research directions for the computing community, including

mechanisms to augment existing datasets to precisely determine areas where more

concerted measurement efforts are needed, improved coverage estimation models,

especially for areas with a lower density of crowdsourced measurements, and accu-

rate and scalable measurement of access beyond a binary notion of coverage. For

the first three chapters of this thesis, the evaluations were strictly based on mobile

broadband. In the next chapter, we study Internet accessibility on fixed broadband

through the lens of the transport layer protocols.
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Chapter 6

MPTCP Performance over

Heterogeneous Subpaths

6.1 Introduction

The challenge to meet 5G throughput goals has motivated today’s mobile devices

to use Wi-Fi and cellular networks simultaneously. To take advantage of multiple

available networks, researchers have created Multipath TCP (MPTCP), a transport

protocol designed to achieve better throughput and resource utilization by enabling

the simultaneous use of several IP addresses/interfaces [140]. A unique challenge

facing widespread MPTCP usage is the considerable performance differences com-

monly observed between cellular and Wi-Fi networks [141].

Prior work has explored the performance of MPTCP in a variety of contexts.

While much of that work has focused on implementing and measuring MPTCP per-

formance, few studies have focused on the default MPTCP scheduler, especially from

the perspective of heterogeneous subpaths. Today, path heterogeneity plagues the

performance of various networks, such as Wi-Fi and cellular networks. In addition,
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cellular networks traditionally have significantly higher latency and loss compared to

Wi-Fi [141]. As studied by [142], single-path TCP performs better than MPTCP over

HTTP/2, especially when page size is small or network transfer is not the bottleneck.

Furthermore, mobile users should not enable Multipath TCP without thoughtful con-

sideration because it may lead to higher energy and cellular data consumption with-

out providing significant quality of experience (QoE) improvements [142]. This study

aims to understand MPTCP performance on paths with differing characteristics. In

particular, we focus on paths of varying latency and loss rates and assess MPTCP

performance in these contexts. We seek to answer the following questions:

⇤ What is the impact of choosing a particular interface over another to act as the primary,

particularly when DNS resolution is a concern?

⇤ How does interface selection impact MPTCP availability and server reachability?

⇤ How does MPTCP perform when paths have differing performance characteristics?

⇤ When is single path TCP a better choice than MPTCP?

We begin our study by measuring packet round-trip times (RTTs) for the Tranco

top 10K websites [36] over different interfaces: Wi-Fi and LTE. RTT is a crucial pa-

rameter in network performance; the default MPTCP scheduler makes path selection

decisions that rely heavily on the RTT of each path. Different interfaces can pro-

duce vastly different RTTs for the same web servers, partly due to server replication

within CDNs. Next, server reachability is critical in assessing whether MPTCP can

be implemented in a broad range of scenarios. Additionally, it helps us understand

the importance of selecting the primary interface. Informed by our findings, we per-

form controlled in-lab experiments that vary network latency and loss conditions to

examine the effect on metrics such as download times and page load time. Lastly,
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we replicate the in-lab test conditions to investigate MPTCP performance in the real

world.

Our experiments indicate that selecting cellular as the primary interface can be

detrimental because of two reasons: a) RTT observed on the cellular path can be con-

siderably higher than on Wi-Fi, and b) IP addresses resolved on the cellular interface

have a lower chance of reachability than those resolved on Wi-Fi. We show empirical

data that the default MPTCP scheduler can underperform when paths are dispropor-

tionately lossy. We compare MPTCP with single-path TCP to study how small flows

suffer more in comparison.

The rest of the chapter is organized as follows. We provide a brief introduction

to MPTCP and discuss related work in Section 6.2. In Section 6.3, we present our

methodology and results from the real-world survey. Section 6.4 describes our con-

trolled experiment testbed, methodology used, and results. Real-world test results

are then presented in Section 6.5. Finally, we conclude our analysis in Section 6.6.

6.2 Background

This section presents a brief overview of MPTCP and the default scheduler. We

then discuss related work to understand how our study explores a less-analyzed

aspect of MPTCP performance.

6.2.1 Multipath TCP Overview

MPTCP is a TCP extension that enables concurrent data transmission from one

end-to-end connection over multiple paths. For instance, on a smartphone, MPTCP

allows applications to simultaneously send and receive data over multiple interfaces,

98



MPTCP Performance over Heterogeneous Subpaths Chapter 6

Figure 6.1: Multipath TCP architecture.

such as Wi-Fi and cellular, by establishing one TCP subflow over each interface [140].

Once a subflow is established, it can be used by the MPTCP scheduler to transmit

data. MPTCP provides various benefits, including better resource utilization, higher

throughput, and smoother reaction to failures. It is likely to work better with paths

with comparable qualities. Figure 6.1 shows the architecture of Multipath TCP.

When multiple subflows are available to send data, the default scheduler [143]

will transmit the data on the subflow with the shortest round trip time. When a seg-

ment is ready to be transmitted, the scheduler chooses the path with the minimum

RTT out of all subflows whose congestion window is not yet full. Suppose there is

more than one such path. In that case, the scheduler develops a systematic inclina-

tion towards one of the interfaces and continues to transmit data on that particular

subflow until the subflow’s congestion window becomes full. The interested reader

can learn more about MPTCP in RFC 6824 [140].

6.2.2 Related Work

Previous work has examined MPTCP in a mobile context. For instance, [144]

studied the impact of mobility on MPTCP, while [145] proposed different MPTCP
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modes to be used by mobile devices for cellular/Wi-Fi handover. However, neither

work explored path heterogeneity with regard to lossy subflows. [146] presented a

measurement study that compares single-path TCP to MPTCP. Arzani et al. [147]

studied the effect of the scheduler design on performance by using different sched-

uler algorithms. In contrast, others have compared various congestion control al-

gorithms [148][149][150][151]. Little prior work studying the effect of selecting the

primary resolution interface exists. Yang et al. [152] proposed an alternative sched-

uler that chooses subflows based on estimating how much more traffic they can han-

dle before becoming congested. Their approach considers scenarios with very large

transfers in a network with a small amount of buffering. Another scheduling algo-

rithm was proposed in [153] to avoid out-of-order segments. However, the authors

do not explain how to remove a segment from a TCP buffer once it is retransmitted

from another subflow.

Kuhn et al. [154] proposed a delay-aware packet scheduler, which is evaluated

only through ns-2 simulations. Their method examines path heterogeneity in stable

CWND and delay conditions only. Closest to our work is [155], which measured

MPTCP performance over cellular networks and Wi-Fi. This study focuses on varying

numbers of subflows and detailed statistics, such as out-of-order delivery and round

trip times, but does not consider lossy subflows. Lim et al. proposed a scheduler

that monitors the available bandwidth on each subflow and send buffers; however, it

does not take advantage of the loss rate information on each subflow.

6.3 Latency and Reachability Survey

The MPTCP scheduler relies on round rip latencies for path selection. Hence,

it is imperative to understand the typical RTT differences between interfaces in a
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mobile context. Furthermore, MPTCP can be impossible to implement when the

server IP address is unreachable over one of the subpaths. We study these parameters

in our real-world survey to understand the obstacles MPTCP faces for widespread

deployment.

6.3.1 Methodology

Since the default MPTCP scheduler relies heavily on round-trip times for path

selection, our first goal is to study the RTT difference of each potential path to the

path’s corresponding web server. To do so, we survey to explore latency and reach-

ability for each of these interfaces to the Tranco top 10K websites [36]. Our testbed

consists of a Samsung Galaxy S5 phone tethered to a Lenovo Thinkpad laptop via

USB. We access the Wi-Fi network through the tethered phone instead of the built-in

interface in the laptop to ensure we account for the performance overhead added

through tethering and maintain consistency across all the interfaces. We use the T-

Mobile network for LTE services. The tests were performed after midnight to avoid

high-usage times, and we ensured the signal strength on the devices was strong. La-

tencies were collected through Hping3 by averaging the RTT of 10 packets sent to

each target IP address through each interface.

6.3.2 Results

As the first step in our study, we perform DNS resolution of the Tranco top 10K

websites [36] on each interface (Wi-Fi and LTE) using the tethered phone. Web servers

can resolve to different IPs over different interfaces. This is because resolution de-

pends on how the ISP routes the request to return the address of the desired con-

tent delivery network (CDN). For instance, cellular operators will likely embed web
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Figure 6.2: CDF of Tranco top 10K web-servers’ RTT, resolved using different interfaces.

servers and CDNs within their core network to provide faster response times to user

web requests. Omitting websites that do not resolve, the resulting sample size after

DNS resolution is 9756 and 9638 for Wi-Fi and LTE, respectively, with an overlap of

58.74% in IP addresses. We then conduct RTT tests on the obtained web servers using

Hping3. Hping3 uses TCP packets to ping the servers. There are four possible DNS

resolution/latency combinations. They are:

1. WW: Wi-Fi interface using address resolved on Wi-Fi DNS

2. WL: Wi-Fi interface using address resolved on LTE DNS

3. LW: LTE interface using address resolved on Wi-Fi DNS

4. LL: LTE interface using address resolved on LTE DNS

Figure 6.2 shows the cumulative distribution function (CDF) for the average round-

trip time for 10 TCP packets sent to each target server collected over each interface.

We observe that the RTT deviation between WW and WL is around 40ms, while the

mean RTT deviation is about 75ms between WW and websites accessed through LTE
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Ping Interface Resolution Interface Percentage

Wi-Fi LTE 4.57%
Wi-Fi Wi-Fi 3.26%
LTE LTE 3.50%
LTE Wi-Fi 3.59%

Table 6.1: Percentage of unresponsive servers.

(LL and LW). It is interesting to note that in about 60% of websites, LL under-performs

in comparison to LW. This result is quite surprising: web servers resolved over LTE,

likely CDN servers within the cellular network infrastructure, incur more significant

delays. We speculate that this happens because servers become unresponsive soon

after DNS resolution. Possible reasons for this behavior can be attributed to load bal-

ancing across several IP addresses associated with a web server, and continual Denial

of Service attacks [156][157]. In addition, LTE should be able to access the servers

resolved on Wi-Fi. It is clear from Figure 6.2 that the use of the web servers resolved

over the cellular interface will likely yield larger delays and hence adversely affect

user experience with longer RTTs.

Table 6.1 shows the percentage of unresponsive servers during the latency test. We

define unresponsive as those servers that never send a response back to our pings.

We study the reachability of servers to understand whether MPTCP is possible to use

in all cases (assuming web servers were MPTCP enabled). If a server is unreachable

over a particular interface, which MPTCP uses as one of its subflows, then MPTCP is

unusable. In other words, it is no better than using single-path TCP. From Table 6.1

we note that the Wi-Fi interface produces far fewer unresponsive servers than the LTE

interface; more than 4.5% of the web servers resolved on LTE are unresponsive. We

posit that this is due to unreachable servers deployed in the cellular core behind NAT

and interference by middleboxes. On the other hand, servers resolved using Wi-Fi
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are more likely to be reachable via other interfaces. Note that more than 40% of the

web servers either resolve differently or do not resolve at all depending on the choice

of interface. This is noteworthy because there is a high probability that either of the

interfaces (i.e., Wi-Fi or LTE) will be unable to establish an end-to-end path with a

web server resolved over the other path. The takeaway from these observations is

that the end-to-end path is unavailable in the presence of unreachable servers. In

other words, MPTCP will be impossible to use.

6.4 Controlled in-lab experiments

As shown in Section 6.3, a considerable disparity exists between the round-trip

times to web servers through cellular and Wi-Fi interfaces. This disparity will likely

influence the path selection process and the resulting performance. In this section, we

study the effect of varying latency and loss rates on performance metrics to indicate

how the MPTCP scheduler will perform across heterogeneous links.

6.4.1 Testbed Setup

Figure 6.3 illustrates the testbed used in our second set of experiments, where we

study the performance of MPTCP by manually setting loss and latency parameters in

our controlled environment. The testbed consists of a wired server and client housed

Figure 6.3: Experimental setup.
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at our research facility. The client is connected to the server through two interfaces

via switches, resulting in two paths between the devices. The client and server are

both Lenovo ThinkCentre M910T machines (Ubuntu Linux 16.04 with MPTCP Kernel

implementation version v0.92) configured with Intel Core i7-7700 processor (3.6GHz)

and paired with 64GB of DDR4 RAM. Each machine comes with one integrated Intel

Gigabit Ethernet interface. We install an additional TP-Link Gigabit Ethernet card

for our experiment on both machines. We disable the wireless interfaces on the client

and server. The switches are both Linksys WRT1200AC dual-band routers, running

OpenWrt version 15.05.1.

6.4.2 Methodology

The motivation of our controlled experiments is to generate baseline results that

can be used as a reference for the real-world experiments in Section 6.5. For in-lab

testing, we configure our lab server as an HTTP server, running Apache2 on port 80.

We first cache the Tranco top 1000 websites to evaluate page load time on our local lab

server. We then establish an MPTCP connection from the client to the server in our

testbed, wherein the client fetches each cached website. The experiment is repeated

100 times for each website, and the average page load time is calculated. While this

approach does not exactly translate to fetching live webpages, the results serve as

a reference for real-world experiments. Hence, our results are an approximation of

actual page load times. Note that our testbed does not reflect the true RTT between

the client and server. Therefore, the controlled experiments consider a broad range

of inter-path RTT differences.

Next, we set up a 2-path MPTCP connection between the client and server in our

testbed. The paths are set up on two different subnets. We aim to structure these
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paths to emulate two different interfaces on a device, e.g., Wi-Fi and LTE. To study

web traffic performance over MPTCP, we choose various file sizes for measurement:

128KB, 256KB, 512KB, 1MB, and 2MB. To study various network conditions, we vary

(a) RTT on path 2 increases (b) Loss rate on path 2 increases

Figure 6.4: Fraction of traffic carried on each path for controlled iPerf experiments.

either the latency or the loss rate of path 2, keeping the other parameter constant. We

use the Linux Traffic Control tc command for this purpose. During our survey in

Section 6.3.2, we found the median RTT to be around 20ms and loss rates consistently

about 0.1% for Wi-Fi. Therefore, we initiate both the paths with a 20ms round-trip

time and 0.1% loss rate. To study the effect of differing path latency, we increase

the RTT to 50ms, and in each subsequent experiment, we increase it in increments of

50ms to a maximum of 500ms on path 2. To study the effect of loss rate, we initialize

both paths with no loss and 20ms of RTT. After that, we increment the loss by 0.5%

on path 2 to a maximum loss rate of 10%. We record measurements for 15% and 20%

loss rates as well.

As our goal is to understand the effect on performance when a higher RTT path

is chosen instead of the lower RTT path as the primary interface, we initialize these

experiments by manually specifying the primary path at the beginning of the experi-

ment. That is, we run two sets of experiments. First, path 1 is set as the primary path,
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(a) RTT on path 2 increases (b) Loss rate on path 2 increases

Figure 6.5: Achieved goodput for web downloads (higher is better).

(a) RTT on path 2 increases (b) Loss rate on path 2 increases

Figure 6.6: CDF of page load time (lower is better).
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(a) RTT on path 2 increases (b) Loss rate on path 2 increases

Figure 6.7: Fraction of web traffic carried on each path for controlled experiments.

and second, path 2 is configured as the primary path. This approach is analogous to

MPTCP choosing the primary interface for DNS resolution in a real-world scenario.

As we explained in Section 6.3, the primary interface chosen for DNS resolution plays

an important role in the reachability of servers. Note that MPTCP can and will, in

subsequent stages, choose which path to send traffic through, a decision dictated by

the MPTCP scheduler. We measure goodput by running iperf [158] in client-server

mode. To specify file transfer size, corresponding to our short and long flows, the -n

flag in iperf is assigned accordingly. Each set of experiments is run 100 times for

every file size. At the server-side, we capture the traffic using tcpdump [159].

6.4.3 Evaluation

In this section, we present the results of our study on increasing RTT and loss rate

on the range of traffic sent on each path. Figures 6.4(a) and (b) show the percentage

of traffic sent over the primary and secondary paths as latency and loss differ. In

Figure 6.4(a), we see that as the RTT increases on path 2, the traffic is directed almost

exclusively on the lower RTT path 1. This is because the algorithm with which the
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default scheduler initiates path selection gives higher priority to paths with lower

RTT [160]. However, in Figure 6.4(b), we see that path 2 still carries traffic, even

though the loss rate increases. For short flows like these, the subflows may never exit

their slow-start phases, which explains why path 2 is still significantly used.

Figure 6.5(a) shows the achieved goodput for 128KB, 512KB and 2MB file sizes

as the RTT on path 2 increases. Due to space restrictions, we omitted flow sizes of

256KB and 1MB from these plots. We see a steady decrease in goodput until an RTT

difference between 200ms and 250ms, after which the goodput flattens. A similar

pattern is observed in file sizes of 512KB and 2MB. This behavior can be explained

by Figure 6.4(a), which indicates that, once the inter-path RTT exceeds 200ms, the

bulk of traffic is carried on path 1 due to its lower RTT. It is clear from Figure 6.5(a)

that after 200ms, additional increases in RTT on path 2 cease to have any significant

effect on the goodput. We observe that MPTCP performs better than single-path TCP

on all occasions, regardless of the choice of the primary path. Next, Figure 6.5(b)

shows the achieved goodput for increasing loss rate on path 2. When we compare

MPTCP with single-path TCP in Figure 6.5(b), we observe that for the short flows

of sizes 128KB and 512KB, single-path TCP outperforms MPTCP. For flow sizes this

small, subflows can still be in their slow-start phase when the download is complete.

Additionally, for the 2MB file size, we observe that TCP performs as well as MPTCP,

if not slightly better. This result tells us the importance of the initial path selection

process, particularly because a considerable fraction of web traffic is small flows [161].

Page load time directly affects user experience, and is represented in Figure 6.6.

Figure 6.6(a) indicates that the page load time does not necessarily increase as the

RTT increases on path 2. We observe that as the RTT increases on path 2, the bulk of

the traffic is carried on path 1, which is associated with lower latency. However, as we

increase the loss rate on path 2 as shown in Figure 6.6(b), page load time gradually

109



MPTCP Performance over Heterogeneous Subpaths Chapter 6

increases. To better understand this result, we study the fraction of traffic carried on

each path in Figure 6.7(a). While the vast majority of traffic traverses path 1 as the

RTT on path 2 increases, this does not hold true as the loss rate on path 2 increases.

In Figure 6.7(b), even though path 2 is lossier, it still carries an appreciable amount

of traffic, over 20% in most cases. As a result, page load times slowly degrade as

we approach the 20% loss rate on path 2. This is because TCP’s estimation of a

path’s RTT is not affected by the packet loss on that particular path; the MPTCP

scheduler ignores RTT for retransmitted and lost packets. Stated otherwise, it does

not take into account path loss. Consequently, this adversely impacts path selection

and hence performance.

6.5 Real world experiments

We next examine the performance of the default scheduler in a more realistic

scenario. This enables us to gauge whether the conditions identified in Section 6.4

occur in practical settings. Wherever possible, we replicate the test cases used in

Section 6.4 to establish a fair comparison.

6.5.1 Testbed Setup

For this set of experiments, we deploy two MPTCP-enabled machines on a popu-

lar cloud service provider. Our testbed consists of a server located in Virginia and a

client that is situated in California. We keep the system configuration similar to our

controlled experiments, i.e., Ubuntu Linux 16.04 with MPTCP Kernel implementation

version v0.92. The client communicates with the server over the Internet through two

different wired interfaces, each connected to a different subnet to maintain isolation
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of routes. We observe an average round-trip time of 61ms with a standard deviation

of ±3ms between the client and server on both paths.

6.5.2 Methodology

In this section, we examine the performance of the default MPTCP scheduler for

simple web downloads using iPerf. According to [162], about 58% of today’s global

Internet traffic is attributed to video streaming. Consequently, content streaming is

typically preceded by (for instance, metadata files) and accompanied by (change in

user preferences) small download sessions that are characteristically short flows. This

suggests that a bottleneck in such download sessions could result in poor quality of

experience (QoE) at the user end. Therefore, we again explore the download perfor-

mances of 128KB, 256KB, 512KB, 1MB, and 2MB file sizes using iPerf. Similar to

Section 6.4, we vary the latency or loss rate on path 2, keeping the other parameter

steady. Inter-path latency is varied from 50ms through 500ms, with increments of

50ms. Loss rates are varied from 1% through 10%, including 15% and 20%. Further-

more, we manually specify the primary path at the start of each experiment to study

the effect on performance when a higher RTT or more lossy path is initially selected.

To determine the fraction of Internet traffic carried over each subpath, we capture

network traces at the server-side using tcpdump.

Then, we investigate the distribution of the page load times for Tranco top 1K

websites [36]. For evaluation purposes, we cache the top 1000 webpages on our

server located in Virginia, along with their associated web objects. We then establish

an MPTCP connection from the client to the server. We run the experiment 100 times

for each webpage and calculate the average page load time while replicating the path

characteristics in Section 6.4, i.e., we vary the latency and loss rates on path 2.
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6.5.3 Evaluation

In this section, we present the results of our real-world experiments. We first

study varying path characteristics’ effect on short flows’ web downloads. Figure 6.8

shows the percentage of traffic sent over the two subpaths as the path characteristics

(latency and loss rate) change. We observe in Figure 6.8(a) that traffic on path 2

becomes negligible as inter-path latency increases. An expected behavior can be

attributed to lower RTT on path 1, which is the single greatest deciding factor in the

default scheduler. On the other hand, while loss rates increase on path 2, selecting a

viable path becomes less deterministic, as we hypothesized. We see a similar trend

in Figures 6.8(b) and 6.4(b), which indicates that subflows fail to exit their slow-

start phase before the download is complete, resulting in considerable traffic over the

lossier path. However, the implications of that behavior become more noticeable in

our study of goodput.

(a) RTT on path 2 increases (b) Loss rate on path 2 increases

Figure 6.8: Fraction of traffic carried on each path for real world iPerf experiments.

Figure 6.9 illustrates the goodput for 128KB, 512KB, and 2MB file sizes as the

path properties become more heterogeneous. In Figure 6.9(a), we notice that the dif-

ference in goodput between MPTCP and single-path TCP widens as the inter-path
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(a) RTT on path 2 increases (b) Loss rate on path 2 increases

Figure 6.9: Achieved goodput for web downloads (higher is better).

(a) RTT on path 2 increases (b) Loss rate on path 2 increases

Figure 6.10: CDF of page load time (lower is better).

RTT increases. This is supported by Figure 6.8(a), which demonstrates that after

an inter-path latency difference of 150ms, traffic is almost exclusively carried on the

lower latency path 1, enabling it to achieve better goodput than the slower single-path

TCP. In contrast, Figure 6.9(b) shows that single-path TCP indeed surpasses MPTCP

with uneven lossy paths, which confirms our findings from the in-lab experiments

(Figure 6.5(b)). For instance, in the case of the 128KB file, MPTCP almost always

performs worse than single-path TCP. Single-path TCP achieves better goodput for

512KB and 2MB files until 6% and 8% loss rates, respectively. This is a significant

finding since it is less likely for a path to have loss rates as high as 6%–8% under nor-
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(a) RTT on path 2 increases (b) Loss rate on path 2 increases

Figure 6.11: Fraction of web traffic carried on each path for real world experiments.

mal operating conditions. Stated otherwise, single-path TCP almost always performs

better than MPTCP while downloading short flows. In practice, this could mean the

difference between an instant video playback versus laggy, pause-filled video con-

tent. This result informs us of how crucial the initial path selection process is, which

can adversely affect the end-user experience.

Another essential factor that affects user experience is the webpage load time.

As shown in Figure 6.10(a), the detrimental effect of increasing RTT on path 2 is

subtly absorbed by MPTCP since path 1 carries the bulk of the traffic (Figure 6.11(a)).

Instead, page load time is adversely affected when loss rates are introduced on path

2. Given the path selection criteria for the default MPTCP scheduler, which only

considers minimum RTT, it is not surprising to observe that more than 25% of the

total traffic is carried on path 2, even though it suffers from a significant 10% packet

loss. Correspondingly, there is a steady increase in page load time in Figure 6.11(b) as

path 2 becomes lossier. Since cellular networks tend to be lossier than Wi-Fi [141], the

path selection process becomes highly critical. Web surfing and video streaming are

everyday activities for an average mobile user and could easily experience a decline

in QoE. The results shown here indicate the limitations of the default scheduler and
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the factors that need to be incorporated to improve mobile performance.

6.6 Discussion and Conclusion

The results of our measurement study point to a few important findings:

Round-trip Times. Our results in Section 6.3 show that round-trip times on cel-

lular are substantially higher than on Wi-Fi. In addition, the majority of web servers

resolved on cellular have lower round trip times on Wi-Fi than on cellular.

Reachability. The primary interface is responsible for DNS resolution in MPTCP.

Resolving IPs over cellular can be detrimental since many servers are unreachable

through Wi-Fi or cellular. MPTCP clearly cannot be used in those scenarios. For

MPTCP to succeed, CDNs deployed by commercial providers may need to be modi-

fied to be reachable from the outside (i.e., not behind NAT). However, this proposition

contrasts with how content is delivered on the modern Internet. These observations

hint at the low viability of a full-scale MPTCP deployment.

Heterogeneous Paths. Our measurement study shows that diversity in path loss

rates is ignored when selecting the best path. This weakness is embedded inside the

default scheduler because it considers only RTT as a metric for path selection. We

realize that it is difficult to implement MPTCP with heterogeneous subpaths. From an

institutional level, near-homogeneous network conditions are needed on all subpaths

for MPTCP to utilize its full potential. For MPTCP to achieve optimal performance,

it should take a broader view of path performance and, at a minimum, consider loss

rate.
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System Design and Predictive Analysis

116



Chapter 7

Inferring Network Performance

7.1 Current Landscape

The domain of computer networks has evolved tremendously over the past 50

years. This evolution has loosely followed a typical pattern: characterize current

networks, and address the inefficiencies through new systems and standards. Fre-

quently, the design philosophy of those systems is reactive, i.e., when a degradation

in performance is observed, the system kicks into action. In our mission to connect

the next billion users to the Internet, we argue that we need to focus closely on not

just proactive but predictive systems. The reasons why there is a need for predictive

systems are:

1. Access to usable Internet is critical. Mobile broadband, an effective access tech-

nology achieved through commercial Long-Term Evolution (LTE) and 5G cel-

lular networks, provides a meaningful way of expanding this access [18]. Still,

it is often concentrated in urban areas, leaving economically marginalized and

sparsely populated regions underserved [6]. The US Federal Communications

Commission (FCC) incentivizes cellular operators serving rural areas [29, 30]
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and maintains transparency by releasing maps from each operator showing

geographic areas of coverage [46]. Recently third parties have challenged the

veracity of these maps, claiming these maps over-represent actual coverage and

thus may discourage much-needed investments. Most of these claims, how-

ever, are either focused on limited areas where a few dedicated researchers

can collect controlled coverage measurements (e.g., through wardriving) or are

mainly qualitative in nature [31, 10, 32]. As dependence on mobile broadband

connectivity increases, especially in the face of the COVID-19 pandemic, pre-

dictive systems that quantitatively validate FCC coverage datasets at scale are

becoming acutely necessary to evaluate and direct resources in Internet access

deployment efforts [83, 127]. This is an issue of technology and technology

policy, with equity and fairness implications for society.

2. As growing numbers of people depend on cellular networks as their primary

means for accessing healthcare, financial, and educational services, and it has

become critical to evaluate how well these networks service their end users. For in-

stance, the COVID-19 pandemic has increased reliance on mobile and portable

Internet access. As a result, communities without access to usable, high-speed

broadband, such as many rural and tribal regions, are severely disadvantaged [26].

While many characterization studies exist in literature [10, 98, 51, 117], there is

a need to evaluate and infer how well the deployed network performs over

time. Moreover, these assessments need to be scalable and easy to deploy. The

Federal Communications Commission has encouraged researchers to study and

report the state of rural networks [85] – the design and deployment of a system

that can report network performance can address this goal.

3. Few prior studies have focused on assessing mobile broadband in rural areas of
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the US; there is a lack of accessible datasets that are comprehensive (including

network-level and application-level traces) and representative and inclusive of

rural demographics. Unfortunately, the evaluation of user quality of experience

(QoE) for commonly used applications accessed over cellular in regions where

people are most likely to be smartphone dependent [45, 24, 6] poses a signif-

icant scalability challenge. QoE metrics collection over mobile broadband in

a geographic area requires time and resource-intensive measurements for each

network provider. As a result, experiments at a single geographic point can be

lengthy. Moreover, in rural areas, obtaining mobile Internet measurements in

places where people are likely to use mobile broadband (e.g., at their homes or

along local transportation corridors) can be challenging [35], as places of inter-

est are far apart (requiring more resource-intensive targeted measurement cam-

paigns) and less densely populated (prohibiting representative crowd-sourcing

measurement efforts). As a result, disruptive systems that can infer the QoE

for commonly used applications over mobile broadband at scale are urgently

needed.

7.2 Why Now?

Today, more than ever, we need predictive systems for the following reasons:

1. Recent years have seen a massive infusion of funds from governmental agen-

cies globally to upgrade the broadband (mobile and fixed) infrastructure. For

instance, The Broadband Equity, Access, and Deployment (BEAD) Program pro-

vides $42.45 billion to expand high-speed internet access by funding planning,

infrastructure deployment, and adoption programs in all 50 US states [163].
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Similarly, BharatNet is a project envisioned by the government of India to con-

nect all the villages of India digitally [164]. The European Union supports the

Connectivity for a European Gigabit Society program through fund allocation

on a 5-year basis [165]. However, allocating funds to specific sectors and plan-

ning zones commensurate with the extent of the upgrade is challenging. Given

the difficulty in aggregating precise network performance and the expected user

demand in the coming years, public sector establishments base their allocation

on heuristics and reports from (not completely unbiased) service providers.

Since these massive funds can unlock access to usable Internet for billions of

people, policymakers require granular datapoints on current and anticipated

network demand. Scalable, predictive systems can help achieve that goal.

2. Assessment of continuously increasing (or decreasing) user demand is impera-

tive for infrastructure planning. Access to systems that can predict user demand

on a macro scale is potentially groundbreaking. This is because effective radio

network planning addresses coverage and capacity requirements and, at the

same time, enables network expansion without the need for significant changes

at existing sites. With the introduction of 5G mmWave, where deployments

are typically denser and frequent upgrades are challenging, systems with the

ability to predict precise end-user experience elevate the probability of a well-

provisioned network.

3. While the knowledge of user demand as it relates to capacity planning on a

macro scale is essential, so is the observability and data about sudden increases

in demand. Over-utilization of an under-provisioned network, typical during

large gatherings (e.g., street festivals, protests) and post-disaster scenarios, can

lead to a partial or complete failure of the communication system [13]. Tradi-
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tionally, cellular networks are akin to walled gardens where observability into

the network is limited at best. This problem can be alleviated using systems

that can assess network state using minimally invasive methods, preferably

with passive measurements.

7.3 Solution

This thesis takes a step towards addressing the critical need for predictive systems.

In Chapter 8 through Chapter 11, we develop several systems capable of inferring the

network performance from the providers and the end users’ perspective. Our design

philosophy is centered around three elements: (i) robustness, (ii) scalability, and (iii)

ease of deployment.

1. In Chapter 8, we propose a novel system, Lumos, that can infer overload con-

ditions in packet-switched cellular networks (LTE/5G) using only passive mea-

surements. Lumos enables observability into cellular networks without the co-

operation of service providers.

2. Chapter 9 extends our work to develop Edain, a comprehensive network moni-

toring suite that works in conjunction with Lumos to infer network congestion

in LTE and 5G networks accurately.

3. Chapter 10 introduces several state-of-the-art network models that can predict

end-user QoE with a high degree of accuracy using inexpensive, readily avail-

able network measurements.

4. In Chapter 11, we present AKIDA, a platform that leverages network acceler-

ators (i.e., SmartNICs) to enable in-network processing of transient workloads.
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AKIDA is designed to be an autonomous compute platform with auto-scaling

capabilities.

7.4 Challenges and Limitations

This thesis examines predictive systems that are designed to be robust and scal-

able. These systems are some of the first studies to analyze network performance

without the infeasibility in deployment. Consequently, there are certain challenges

and limitations associated with first-of-its-kind studies:

1. Building a predictive system using supervised learning requires the collection

of tens of thousands of data points to tune network models. Unfortunately, few

to no existing datasets focus on QoE measurements at scale and around net-

works that exhibit wide temporal and spatial variation. As a result, we collect,

clean, and curate all of our datasets used in training the models described in

this thesis. Undertaking measurement campaigns is intensive in terms of hu-

man effort, economic cost, and time, making it difficult to scale. We outlined

the specific challenges in Chapter 2 (§2.2).

2. Certain systems require an auxiliary training of a small batch of crowd-sourced

data. For instance, database entries are crowd-sourced to collect cellular signal

measurements when the recording device passes within range of an eNodeB.

This dataset is more comprehensive in population centers and highways where

people more often travel. If there are too few measurements overall, or if mea-

surements are primarily sourced from the same grid section, then the eNodeB

location estimate can be inaccurate. In addition, certain coverage data required

for training are generated using predictive models that are proprietary to the
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operator [9] and not generally reproducible. Furthermore, the publicly available

dataset consists of binary coverage and lacks performance-related data.

3. Accurate prediction of network events (like degradation in QoE performance)

involves collecting datasets that include those adverse events. Such datasets

comprise rare adverse events, as most of the data points are normal, i.e., they

do not have very many QoE degrading events. As a result, those datasets have

the class-imbalance problem, typical for most anomaly detection problems. To

address this issue, we apply the sampling technique SMOTE [166] to balance

the classes artificially. However, such an approach reduces the number of data

points we can use for training, say, the classifier, which affects the accuracy.

With SMOTE, we observed no improvements in accuracy with simpler learning

models (e.g., SVM, random forest, etc.) and lower accuracy for more complex,

neural network-based classifiers. Therefore, for the NN-based classifiers, we

adopt a new technique that has been proven to increase classification accuracy

in datasets that suffer from the class-imbalance issue for the object detection

problem [167]. This technique addresses the class-imbalance problem by re-

shaping the standard cross-entropy loss so that it lowers the weights for the

majority class [167]. It also introduces the concept of focal loss that prevents the

majority class from overwhelming the classifier during the training phase.

Our goal with this body of work is to set the direction of networking research

towards predictive systems that are reproducible, verifiable, open-sourced network

models. We hope to encourage other researchers and the academic community to

develop and deploy open-sourced systems.
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Chapter 8

Packet-level Overload Estimation in

LTE Networks using Passive

Measurements

8.1 Introduction

With 6 billion users and growing, LTE is the leading mobile network technol-

ogy worldwide in 2022 [168]. With this growth comes critical challenges in sus-

taining consistent, high-quality service to an increasing subscriber base [169]. In a

well-provisioned region, sudden escalation in traffic demand from user equipment

(UEs) can occur during large gatherings (e.g., street festivals, protests). Similarly,

damaged infrastructure and atypical utilization volume can overwhelm a previously

well-provisioned network after a disaster. Prior work has also demonstrated that

even in areas that cellular providers claim are well-covered, persistent over-usage

due to insufficient capacity can exist [14].

As a specific example, in 2017, Hurricane Maria brought down 95% of cellular
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sites in Puerto Rico [13]. As a result, affected citizens on the ground were unable

to request a rescue from rising flood waters. In disaster scenarios, call volume may

overload capacity even when cellular towers remain functional, causing base stations

to reject calls [170, 171]. Unfortunately, cellular providers are incentivized to state

that damaged cellular services have been returned to an operational state. Indeed,

after Hurricane Maria, statuspr.org soon reported that over 90% of cell towers were

operational; however, anecdotal evidence indicated such statistics were grossly over-

stated.

To remedy this disparity between reported coverage and actual usability, individ-

ual users, watchdog groups, and government agencies need tools to verify whether

a network serves customers adequately. After a disaster, the FCC typically receives

outage reports from telecoms, for instance [11]. Still, due in part to overload, the

actual usability of active towers is difficult to assess without access to the internal

network. Public entities should be able to determine a particular base station’s over-

load and operational status/usability. Further, they should be able to accomplish this

without relying on the cooperation of a cellular provider.

To address this critical need, we propose a novel solution to infer overload in

LTE networks based on messages broadcast by the eNodeB. Through the analysis

of multiple message types, we draw clear comparisons between instances of high

network utilization and typical operating conditions for several eNodeBs. Our results

indicate that eNodeBs demonstrate measurable performance differences indicative of

overload conditions.

Importantly, our solution works without the cooperation of the cellular provider.

Using low-cost, readily usable off-the-shelf equipment, we demonstrate that unen-

crypted broadcast messages sent by the eNodeB [172] on the broadcast channel can

be passively collected and analyzed to estimate local overload and hence usability.
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We quantify our results by computing two normalized metrics, which are propor-

tional to the number of connection reject messages and cell barring signals (cellBarred),

respectively (cell barring signals prohibit UEs from camping on a particular cell). In

addition, we evaluate the back-off timer (waitTime) encapsulated in each reject mes-

sage. In LTE, a connection reject message does not contain a rejection case. Conse-

quently, we must use higher waitTime values, coupled with increased rates of con-

nection request denials, to reveal possible overload.

To test the operation of our system, we perform multiple measurement cam-

paigns: two at events with unusually large crowd gatherings and two at those ex-

act locations but during typical usage. We collect and analyze over 3.2 million LTE

frames through these measurement campaigns. Our analysis indicates that overload

on an eNodeB can be identified through an increase in reject messages and mean

back-off time. Moreover, these events are often accompanied by a significant increase

in cell barring signals. We show that overloaded cell towers frequently deny larger

percentages of connection requests and issue higher waitTime compared to typical

utilization periods. Further, we observe an unusual number of barring signals pro-

hibiting UEs from camping on their desired eNodeBs.

8.2 Related Work

Diagnostic methods in LTE networks are known to be cumbersome. This includes

packet-level analysis to estimate overload because messages transmitted after the

connection establishment stage are invisible to a passive device. As a result, little

prior work leverages passive measurements to detect overload.

Previous work has led to the development of several network analysis tools.

xgoldmon [173], for instance, can monitor control plane messages over 2G/3G but
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not LTE. SCAT [174] is a tool designed to detect problems in cellular networks, which,

although quite useful, is limited to only active monitoring on Qualcomm and Sam-

sung basebands. QXDM [175] is a tool developed to diagnose network statistics that is

limited to only Qualcomm baseband and requires a paid license. While [176, 177, 178]

offer very similar feature sets to the tools discussed above, they are not tailored to

work with software-defined radios for passive monitoring. Schmitt et al. [179, 14]

employ a comparable approach to ours, except their study is limited to GSM net-

works. We believe the biggest drawback of these prior tools is their inability to work

with passive measurement devices, such as software-defined radios (SDRs).

Several prior works have studied various congestion control algorithms in LTE

networks [180, 181, 182, 183], but little work has explored overload detection with-

out involving an active monitoring aspect. Torres et al. [184] use machine learning

models to predict network congestion. However, their approach requires consider-

able historical data. It is not suitable for urban sectors where eNodeBs are upgraded

regularly to cater to increasing user bases, nor can it be used to assess current over-

load levels. Chakraborty et al. [185] introduce LoadSense, which offers a measure

of cellular load using channel sensing at the PHY layer. Similarly, [186] allows a

client to monitor the LTE base station’s PHY-layer resource allocation efficiently and

then map such information to estimate available bandwidth. Cellular Link Aware

Web loading (CLAW) is proposed in [187], which boosts mobile Web loading using a

physical-layer informed transport protocol. Although the aforementioned tools can

estimate whether the radio resources are fully allocated, they do not explicitly reveal

whether the network is overloaded.

Our method focuses primarily on analyzing messages broadcast before a connec-

tion is established, as these messages can be captured and analyzed by low-cost

SDRs. Our approach is portable, scalable, independent of any proprietary platform
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(e.g., Qualcomm, Samsung, etc.), and works with any cellular service.

8.3 Background

In our work, we examine cellular transmissions using software-defined radios.

While most of the transmissions on LTE are encrypted between the eNodeB (LTE base

station) and UE (user equipment, such as a cellphone) [188], connection establishment

messages are sent in the clear. We use these messages to determine overload, as

described in the following sections.

8.3.1 Radio Resource Control (RRC)

The RRC protocol [189, 190] supports the transfer of common Non-Access Stratum

(NAS) [191] information (which applies to all UEs) as well as dedicated NAS infor-

mation (which applies only to a specific UE). Directed RRC messages (unicast to a

single UE) are transferred across Signalling Radio Bearers (SRB)s, which are mapped

onto logical channels [192, 193] – either the Common Control CHannel (CCCH) dur-

ing connection establishment or a Dedicated Control CHannel (DCCH) if the UE is in

an active connection state. Similarly, System Information (SI) messages are mapped

to the Broadcast Control CHannel (BCCH). Since messages on DCCH are on a private

channel, they cannot be decoded by passive monitoring devices.

Common Control CHannel (CCCH): This channel is used to deliver control infor-

mation in uplink and downlink directions when there is no confirmed association

between a UE and the eNodeB – i.e.„, during connection establishment. Messages on

this channel are transmitted in the clear and can be passively decoded. We leverage

this knowledge to analyze signaling messages and estimate the overload level in an
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Figure 8.1: Flow diagram for connection reject message.

eNodeB.

Broadcast Control CHannel (BCCH): This is a downlink channel that is used to

broadcast System Information (SI). It consists of the Master Information Block (MIB)

and a number of System Information Blocks (SIBs). The MIB and SIBs are broadcast

through Radio Resource Control (RRC) messages. SIB1 is carried by SystemInfor-

mationBlockType1 message. Though there are other SI messages, we focus on SIB1

for this study. SIB1 contains the cell barring (cellBarred) status, which indicates

whether or not a UE may choose the cell. When cellBarred status is indicated, the

UE is not permitted to select/reselect this cell, not even for emergency calls [194]. In

that case, the UE may connect to another cell.

8.3.2 Signalling Radio Bearers

A Signalling Radio Bearer (SRB) [195] carries CCCH signaling data. An SRB is

used during connection establishment to establish the Radio Access Bearers (RABs)

and deliver signaling while on the connection (for instance, to perform a handover,

reconfiguration, or release). There are three types of SRBs. SRB0 uses the CCCH

channel with transparent mode RLC while SRB1 and SRB2 use the dedicated channel

with acknowledged mode RLC. In other words, SRB0 can be decoded by non-network

equipment such as a software-defined radio in the vicinity, while SRB1 and SRB2
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cannot. Table 8.1 shows various signalling messages SRB0 carries.

For our study, we focus on RRCConnectionReject messages (solid arrow in Fig-

ure 8.1) with corresponding waitTime (back-off time, before a UE can again initiate a

connection) values, Connectio- nRequest messages, and cellBarred signals (BCCH).

We formulate two normalized metrics based on the percentage of reject messages per

request sent and the ratio of cellBarred signals to the number of SIB1 messages

transmitted over thirty-second time bins.

8.3.3 Managing Overload

Overload management is invoked to unburden a cell to an acceptable level when

overload is detected, for instance, if the cell load remains above a threshold for some

continuous period. An alternative strategy, such as that used by WCDMA, is to lower

the bit rates of connected users until the load returns to an acceptable level [196].

However, in a pure packet-based system such as LTE, the user bit rate is main-

tained at the MAC scheduler [197], which already provides a soft degradation of

user throughput as the system load increases. Thus, if overload is detected in a cell,

the system must remove a subset of the connected bearers until the load is reduced

to an acceptable level. Admission Control [198] is used to restrict the number of UEs

given access to the system to provide acceptable QoS to admitted users.

8.4 Implementation

8.4.1 Experimental Setup

In our experimental setup, our receiver is comprised of an Ettus Research USRP

B210 [199] SDR attached to an MPantenna SUPER-M ULTRA Mobile Antenna with
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Table 8.1: SRB0 Summary
Channel Type RLC Mode

CCCH Transparent
(Decodable from passive capture)

Direction RRC Message

Downlink RRC Connection Setup
RRC Connection Reject

Uplink RRC Connection Request

a frequency range from 25MHz to 6GHz [200]. The USRP is connected to a Lenovo

ThinkPad W550s laptop for data collection and post-processing. We use the srsUE

mode in the open-source srsLTE software suite [81] to locate available cells in the

vicinity by scanning all frequency bands. On the day of the event, we capture broad-

cast messages in the form of binary I/Q samples using srsLTE’s UE usrp_capture

utility.

8.4.2 LTE Packet Decoding

We start with converting binary I/Q samples to hexdumps. To investigate the

extent of overload on eNodeBs, we transform the hexdump into network traces

using Wireshark’s text2pcap command [201]. Next, we use lte_rrc Lua dissectors

to decode LTE RRC messages using tshark [202]. We employ lte � rrc.dl.ccch and

lte � rrc.ul.ccch protocols to decode RRC messages on the downlink and uplink com-

mon control channel, respectively. Lastly, we use the lte � rrc.bcch.dl.sch protocol to

decode downlink messages on the broadcast control channel.

Listing 8.1 shows a snapshot of the decoded RRC message on the downlink

CCCH. We can see the RRCConnectionReject message tree and additional options

sent by the eNodeB during the RRC connection establishment phase. Embedded in

this message is the waitTime parameter. While reject messages indicate overload,
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Listing 8.1: Snapshot of a decoded DL - CCCH message showing RRCConectionReject.
" u s e r _ d l t " : "DLT : 147 , Payload : l t e − r r c . dl . ccch \

(LTE Radio Resource Control (RRC) protoco l ) " ,
" l t e − r r c . DL_CCCH_Message_element " : {

" per . choice_index " : " 0 " ,
" l t e − r r c . message " : " 0 " ,
" l t e − r r c . message_tree " : {

" per . choice_index " : " 2 " ,
" l t e − r r c . c1 " : " 2 " ,
" l t e − r r c . c 1 _ t r e e " : {

"lte-rrc.rrcConnectionReject_element" : {
" per . choice_index " : " 0 " ,
" l t e − r r c . c r i t i c a l E x t e n s i o n s " : " 0 " ,
" l t e − r r c . c r i t i c a l E x t e n s i o n s _ t r e e " : {

" per . choice_index " : " 0 " ,
" l t e − r r c . c1 " : " 0 " ,
" l t e − r r c . c 1 _ t r e e " : {

" l t e − r r c . r rcConnect ionRe jec t_r8_e lement " : {
" per . o p t i o n a l _ f i e l d _ b i t " : " 1 " ,
"lte-rrc.waitTime": "6"
" l t e − r r c . nonCri t i ca lExtens ion_e lement " : {

" per . o p t i o n a l _ f i e l d _ b i t " : " 1 " ,
" per . o p t i o n a l _ f i e l d _ b i t " : " 1 " ,
" per . o c t e t _ s t r i n g _ l e n g t h " : " 2 0 4 8 " ,
" l t e − r r c . l a t e N o n C r i t i c a l E x t e n s i o n " :

" 3 4 : 0 7 : 7 9 : f0 : 2 c : e7 : 9 0 : 0 0 : 2 8 : 0 7 : 6 3 : 4 8 : 3 1 : b7 : 9 0 : 0 0 :
3 8 : 0 7 : 0 4 : f0 : 2 2 : 6 7 : 8 1 : 0 8 : 3 0 : 8 7 : 9 e : 4 0 : 3 f : 3 7 : 6 0 : 7 0 :
2 0 : 2 7 : 8 2 : 0 0 : 2 1 : 1 7 : 4 c : 8 8 : 3 6 : 4 7 : 8 0 : 0 0 : 2 0 : 0 7 : 1 5 : 0 0 :
2a : 9 7 : 9 0 : 0 0 : 2 8 : 1 7 : 9 5 : 3 0 : 2 a : 9 7 : 9 9 : 3 0 : 2 c : 8 7 : 8 2 : 0 0 :
2 1 : 0 7 : 4 c : f0 : 3 6 : 7 7 : 8 5 : b0 : 2 2 : d7 : 8 2 : 3 0 : 2 1 : 0 7 : 8 2 : 4 0 :
2 1 : 2 7 : 9 f : 8 0 : 2 f : d7 : 6 8 : 1 8 : 3 3 : f7 : 8 4 : 0 0 : 3 2 : 0 7 : 2 3 : 8 0 :
2 1 : d7 : 7 6 : f0 : 2 b : 7 7 : 9 1 : 4 0 : 2 8 : a7 : 8 1 : 0 0 : 3 0 : 9 7 : 4 2 : 0 0 :
2 1 : 1 7 : 8 8 : 7 0 : 2 4 : 2 7 : 9 6 : 0 0 : 2 b : 0 7 : 4 8 : 0 0 : 2 4 : 1 7 : 6 6 : 0 0 :
2 3 : d7 : 9 3 : c0 : 2 9 : f7 : 9 4 : 0 0 : 3 a : 0 7 : 5 0 : f0 : 3 8 : 7 7 : 6 8 : 8 0 :
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((a)) SPD dataset.
Balboa Park, San Diego, CA

((b)) CSR dataset.
Downtown San Diego, CA

Figure 8.2: Google aerial map of experimental datasets.

we can use the value of the waitTime metric to measure the severity of overload.

The value of waitTime is an integer in the range of 1–16, which defines how many

seconds the UE should wait after reception of the RRCConnectionReject until a new

connection can be attempted. According to 3GPP TS 23.401 [203], when rejecting an

RRC connection request, the eNodeB indicates to the UE an appropriate timer value

that limits further requests relative to the severity of overload; the more the overload,

the greater the waitTime. Upon receiving the RRCConnectionReject message, the UE

starts timer T302 [189], with the timer value set to waitTime. The UE cannot send

another RRCConnectionRequest for mobile originating calls, signaling, terminating

access, or circuit-switched fallback (CSFB) [204, 205] on the same cell until the ex-

piry of T302. Note that in LTE, the RRCConnectionReject message does not contain

a RejectionCause therefore, waitTime, in conjunction with reject messages, is a crucial

parameter in assessing the level of overload.
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8.4.3 Datasets

To test our proposed solution, we identify times and locations in which we an-

ticipate cellular overload, capture traces, and then compare network performance

in those traces with baselines captured in the exact location during normal operat-

ing conditions (when no network overload is likely to occur). We select spaces that

are anticipated to have large gatherings but are unlikely to be provisioned for large

crowds (i.e., city streets as opposed to stadiums that typically have sufficient network

capacity to handle crowds).

We hypothesize that during large crowds, we will observe higher numbers of

RRCConnectionReject messages than in times of regular operation. Overall, our

dataset consists of over 3.2 million frames, with data collection that lasts for a cu-

mulative duration of about 5.2 hours. While it is not possible to compute the exact

number of UEs in the vicinity due to the lack of international mobile subscriber

identity (IMSI) number in broadcast messages for security reasons, measuring the

number of temporary unique UE IDs (uniqueUeID) in RRC Connection Requests al-

lows us to estimate the number of active UEs present nearby. A detailed overview of

the datasets is provided in Chapter 2 (§2.1)(St. Patrick’s Day, San Diego).

8.5 Evaluation

We analyze five RRC elements: (a) RRCConnectionReject, (b) wait- Time, (c)

RRCConnectionRequest, (d) cellBarred signal and (e) number of SIB1s transmitted

(#SIB1). Collectively, we refer to this data as "RRC metrics". We plot the values of

these RRC metrics over thirty-second bins. We found that thirty-second bins were

appropriate for our analysis because smaller time bins had little to no relative varia-
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tion between the samples; however, we missed important data points when we used

sixty-second or larger bins. In our evaluation, we observe that the rate of transmitted

RRCConnectionReject messages is considerably higher in SPD and CSR than in their

respective baselines, per our initial hypothesis. Further, we discover an increase in

cellBarred signals and waitTime values in overloaded datasets (i.e., SPD and CPR).

8.5.1 Rejects

According to [195], an eNodeB may send an RRCConnectionReject in response

to the UE’s RRCConnectionRequest for exactly one of the following three reasons: (i)

the eNodeB is overloaded (e.g., severe increase in requesting UEs that the eNodeB

cannot accommodate); (ii) the necessary radio resources for the connection setup

cannot be provided (for instance, damaged equipment on eNodeB that results in

limited access to the core network); or (iii) the Mobility Management Entity (MME)

is overloaded. The MME is the key control node for the LTE access network, which

serves several eNodeBs. It is in charge of all the control plane functions related to

subscriber and session management. Once the MME detects overload, it transmits an

overload start message to the affected eNodeBs, signaling them to reject connection

request messages for non-emergency and non-high priority mobile devices originated

services.

Analysis of the reject messages sent over a fixed time interval can quantify the

level of overload in the network. Figure 8.3 illustrates the average number of reject

messages transmitted in thirty-second bins. As predicted, we notice significantly

more reject messages in the SPD and CSR datasets. Figure 8.3(a) indicates that there

are, on average, eight times more reject messages during the SPD parade compared to

the SPD baseline (Figure 8.3(b)). Similarly, we observe a fifteen-fold increase in reject

135



Packet-level Overload Estimation in LTE Networks using Passive Measurements Chapter 8

((a)) SPD ((b)) SPD_base

((c)) CSR ((d)) CSR_base

Figure 8.3: Number of RRCConnectionReject messages transmitted in thirty-second bins.

messages in Figure 8.3(c) as compared to Figure 8.3(d). This significant increase in

reject messages indicates an increase in cellular network utilization.

8.5.2 Phi (F) Measure

We examine a normalized second-order metric to understand better how over-

load levels vary. We define the Phi (F) measure as the ratio of the number of

RRCConnectionReject messages to the number of RRCConnectionRequest messages.

Once again, we choose a bin size of 30 seconds. The Phi measure indicates the sever-
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ity of overload, as it reflects the percentage of new users who could not connect to

the network. In future studies, we wish to examine the temporal variation in Phi

(or the number of new users that were rejected) to quantify the maximum acceptable

load threshold in eNodeBs. As expected, there is a considerable difference between

overloaded datasets (i.e., SPG and CSR) and their respective baselines. Figure 8.4(a)

shows that Phi is as much as three times that in Figure 8.4(b). This difference is

even more pronounced in Figure 8.4(c), where Phi is more than seven times that in

Figure 8.4(d). This trend is similar to what we observed in Section 8.5.1. It also indi-

cates the relationship between the number of UEs (# uniqueUeIDs) and the tendency

towards network overload, as is expected.

8.5.3 Average waitTime

When we compare the average waitTime across datasets in Figure 8.5, we observe

that SPD and CSR have longer waitTimes than their baselines. We also see that AT&T

performs worse in SPD, closely followed by T-Mobile. In CSR, T-Mobile appears to

perform slightly worse than AT&T. Verizon, however, shows lower waitTime in all

of the datasets. Note that the sample sizes of these distributions are proportional

to the number of reject messages, as shown in Figure 8.3. Nevertheless, all telecom

providers transmit longer waitTimes during increases in traffic demand.

Longer waitTime in SPD and CSR is perhaps explained by the high proportion

of UEs (# uniqueUeIDs) in the given location. Suppose the magnitude of UEs is

great enough to result in overload. In that case, eNodeBs start curtailing overload

conditions by engaging proprietary mitigation schemes, one of which is transmitting

longer waitTime. The overall result confirms our hypothesis that these messages and

parameter values can be used to infer overload. The comparison is noteworthy as
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((a)) SPD ((b)) SPD_base

((c)) CSR ((d)) CSR_base

Figure 8.4: Phi (F) measure in thirty-second bins.

it supports our earlier results where we compute RRCConnectionReject messages.

Average waitTime serves as an additional indicator of overloaded eNodeBs.

8.5.4 Omega (W) Measure

In addition to the reject messages and their corresponding waitTime, cellBarred

status is a crucial parameter that can indicate overload in an eNodeB. The cellBarred

status transmitted within a system information block 1 (SIB1) message indicates that

the UE is not allowed to camp on a particular cell. We suspect that cells can initiate
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load balancing during overload conditions by systematically preventing UEs from

anchoring on them. To evaluate our theory, we analyze cellBarred messages to

compare the percentage of these messages in our datasets.

((a)) SPD ((b)) SPD_base

((c)) CSR ((d)) CSR_base

Figure 8.5: Distribution of average waitTime.

The Omega (W) metric allows us to measure the ratio of cellBar� red signals

transmitted to the number of SIB1 frames received in thirty-second bins. We use this

second-order metric to establish a correlation between Omega and overload. Fig-

ure 8.6 depicts the variation in Omega across all datasets. We observe an increase of
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((a)) SPD ((b)) SPD_base

((c)) CSR ((d)) CSR_base

Figure 8.6: Omega (W) measure in thirty-second bins.

20% in SPD and CSR datasets over their respective baselines. This indicates a relation-

ship between cell barring signals and overload, confirming our hypothesis. However,

it is interesting to observe that each of the mobile network operators (i.e., T-Mobile,

Verizon, and AT&T) have comparable Omega values in SPD and CSR, even though

they exhibit noticeably different trends in Figures 8.3 and 8.4. That is because the

inherent load-handling capacity of eNodeBs and the density of users served to differ.

This suggests that overloaded eNodeBs operating in disparate network conditions

prefer consistently rejecting incoming connection requests rather than broadcast un-
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availability (through cell barring messages), regardless of their proprietary overload

mitigation schemes.

8.6 Conclusion

In this chapter, we propose a novel method to assess overload in nearby LTE eN-

odeBs, utilizing off-the-shelf hardware without requiring cooperation from the cellu-

lar provider. Our analysis offers convincing evidence that messages broadcast by the

eNodeB can be used to detect cellular overload using passive monitoring. In future

work, we will explore how passive overload inference can be leveraged in a system

for automated overload mapping using ground-based data collection and Unmanned

Aircraft Systems, independent of collaboration from a cellular provider. Such tools

can be leveraged by regulators and policymakers and allow targeted deployment of

alternative communication channels. In the next chapter, we explore how this novel

method can be extended to infer network congestion and the performance degrada-

tion observed on UEs.
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Chapter 9

Estimation of Congestion from

Cellular Walled Gardens using Passive

Measurements

9.1 Introduction

In this study, we propose a novel solution1 to infer overload and congestion2 in

LTE networks based on messages broadcast by the eNodeB. We develop Lumos, a

data analysis platform capable of quantifying overload in eNodeBs. The design and

implementation of Lumos are described in section 9.2. To validate the existence of

congestion as detected by Lumos, we develop a network monitoring suite that au-

1This study is an extension of Chapter 8 where the focus was on estimating overload. In this study,
we build upon our prior work to detect and quantify congestion as a result of the estimated overload
on the network.

2We consider overload as the state where the user equipment is denied access to camp on an
LTE base station (eNodeB) due to the current number of connections. In contrast, congestion is a
state while a user device is connected, leading to performance degradation at the user end (e.g.,
slower downloads, poor video streaming quality, etc.). We explain these two terms in more detail in
section §9.2.1.
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tomates the collection of Quality of Service (QoS) and Quality of Experience (QoE)

metrics; this suite is described in section 9.3. Through the analysis of multiple mes-

sage types, we draw clear comparisons between instances of high network utilization

and typical operating conditions for several eNodeBs. Further, we evaluate perfor-

mance differences incurred from overload-driven congestion through QoS and QoE

metrics assessment. Our results indicate that eNodeBs demonstrate measurable per-

formance differences indicative of overload conditions and network congestion.

Importantly, our solution works without the cooperation of the cellular provider.

Using low-cost, readily usable off-the-shelf equipment, we demonstrate that unen-

crypted broadcast messages sent by the eNodeB on the broadcast channel can be

passively collected and analyzed to estimate local overload. We concurrently col-

lect measurements on active monitoring devices to draw parallels between overload,

network congestion, and network usability.

We quantify our results by computing two normalized metrics, which are propor-

tional to the number of connection reject messages and cell barring signals (cellBarred),

respectively (cell barring signals prohibit UEs from camping on a particular cell). In

addition, we evaluate the back-off timer (waitTime) encapsulated in each reject mes-

sage. Note that in LTE, a connection reject message does not contain a rejection

cause. Consequently, we must use higher waitTime values, coupled with high rates

of connection request denials, to indicate possible overload. To validate our results,

we use our network monitoring suite (§9.3) to demonstrate the corresponding per-

formance degradation at the network (QoS) and user-level (QoE). For instance, under

high load, QoE for common applications such as Web browsing and video streaming

can deteriorate to the point of unusability.

To test the operation of our system, we perform multiple measurement cam-
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paigns3: three at events with unusually large crowd gatherings, and three at those

exact locations but during times of typical usage. Through these measurement cam-

paigns, we collect and analyze over 7 million LTE frames from four major telecom

operators in the US (AT&T, Sprint, T-Mobile, and Verizon).

Our key contributions and findings include:

• Overload on an eNodeB can be identified through an increase in reject messages

and mean back-off time. We show that overloaded cell towers frequently deny

4⇥ larger percentages of connection requests, issue 35% higher waitTimes, and

broadcast unavailability through 30% more barring signals than baseline mea-

surements;

• Overload conditions are often accompanied by a significant increase in conges-

tion as revealed through a considerable drop in service usability at the user end.

We observe at least 10⇥ lower throughput, 2⇥ higher latencies, and 8⇥ higher

packet losses in atypical utilization periods;

• Quality of experience significantly drops for video streaming applications: we

note a minimum of 6⇥ higher start-up delay, 3⇥ lower video quality, 3⇥ higher

stall ratio, and over 30% decrease in buffer levels.

9.2 Lumos: Detecting Overload

To examine and quantify cell load on eNodeBs, we develop Lumos. Lumos is

based on the idea that third-party assessment tools should be accessible to the com-

munity and carry a low hardware footprint. Our design philosophy is driven by

implementing comprehensible systems that are easy to understand and orchestrate.

3We plan to release the dataset used for this study publicly.
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9.2.1 Congestion Control

While overload can potentially impair services at the eNodeBs, congestion can

lead to severe performance degradation at the end-user. Congestion refers to the

performance bottleneck experienced by users as a result of significantly higher traffic

demand by the UEs. Overload is the scenario that causes the network to deny UEs

to preserve the load balancing capabilities of the eNodeBs. An overload scenario will

manifest as a depletion of resources critical to the network’s operation.

Congestion control is invoked to unburden a cell to an acceptable level when over-

load is detected, for instance, if the cell load remains above a threshold for some con-

tinuous period. An alternative strategy, such as that used by WCDMA, is to lower the

bit rates of connected users until the load returns to an acceptable level [196]. How-

ever, in a pure packet-based system such as LTE, the user bit rate is maintained at the

MAC scheduler [197], which already provides a soft degradation of user throughput

as the system load increases. Thus, if congestion is detected in a cell, the system must

remove a subset of the connected bearers until the load is reduced to an acceptable

level. Admission Control [197] is used to restrict the number of UEs given access to

the system to provide acceptable QoS to admitted users.

9.2.2 Design

We orchestrate a passive end-user system capable of listening to all broadcast

messages over the air, a functionality available in all UEs. In our setup, the receiver

comprises an Ettus Research USRP B210 [199] SDR attached to an Apex III Wideband

5G/4G Dipole Terminal Antenna with a frequency range from 450MHz to 6GHz [80].

The USRP is connected to a Lenovo ThinkPad W550s laptop for data collection, post-

processing, and analysis. We greatly reduce computational overheads on the laptop
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by implementing our custom Lua dissectors to decode and parse the LTE packets.

We use the srsUE mode in the open-source srsLTE software suite [81] to locate avail-

able cells in the vicinity by scanning all frequency bands. On the day of the event,

we capture broadcast messages in the form of binary I/Q samples using srsLTE’s

UE usrp_capture utility. Figure 9.1 shows our experimental setup. LTE packet

decoding is instrumented similar to the previous study. The details are provided

in Chapter 8 (§8.4.2).

9.2.3 Applicability in 5G Cellular Networks

This section discusses the scalability of this methodology to 5G cellular networks.

After a thorough comparison of 5G NR RRC protocols in 3GPP TS 38.331 [206], we

find that the signaling procedure for NAS is identical to that of LTE [189]. Further-

more, RRCConnectionRequest, RRCConnectionReject and waitTime retain the same

message body extensions as LTE. We also observe LTE-equivalent protocols to ac-

quire MIB and SIB1 in 5G NR RRC, with similar periodic intervals between each

message broadcast by the base station (referred to as gNodeB in 5G). We believe Lu-

mos can be scaled to be deployed on 5G networks with little to no modification in

the source code and hardware requirements for base stations using the sub-6GHz

Figure 9.1: Experimental setup.

146



Estimation of Congestion from Cellular Walled Gardens using Passive Measurements Chapter 9

spectrum. For mmWave deployments (>30 GHz), we need a compatible USRP and

radio antenna to implement Lumos, with no changes to the source code. Due to the

limited availability of 5G coverage and 5G-enabled phones, we could not gather 5G

specific data at the time of our measurement collection.

9.3 Network Monitoring Suite

We develop a comprehensive network monitoring suite to quantify congestion

due to cellular overload. Whereas Lumos is a passive monitoring platform, this

monitoring suite is used for active network measurement. The suite provides an

extensive set of features to measure QoS and QoE metrics at the client. We have used

this active measurement tool in sixteen locations across the United States to compare

mobile broadband performance under varying network conditions.

9.3.1 Implementation

The monitoring suite’s functionality ranges from computing network level (through-

put, latency, and packet traces) to application-level (on-demand video streaming

(YouTube)) and page load time measurements. We measure cellular performance

by tethering phones to laptops running the monitoring suite. We ensure that the

cellular plans on all our devices have unlimited data and are hot-spot enabled to

effectively achieve the same level of performance as we would on the mobile device.

This tool was developed for Linux, keeping ease of deployment in mind. It is agnos-

tic to the network type and provides flexible deployment in wired, Wi-Fi, or cellular

environments. Developing an integrated smartphone app was impractical as the level

of unification achieved for various application-level measurements (YouTube, Skype,
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etc.) was simply not possible on smartphone operating systems, given the walled

access to the iOS ecosystem and recent restrictions introduced in Android APIs [207].

Latency: The monitoring suite’s rtt_out function automates the collection of round-

trip times by initiating pings through Hping3 [96] to a server hosted on an AWS

instance (Virginia). We configure Hping3 to use TCP packets instead of ICMP. The

ping duration is capped at 120 seconds, with one-second intervals between each ping.

The average latency is then computed using two different sessions - one before the

throughput tests (described below) and one after. This enables us to capture the

latency variation introduced in the network, if any, after a throughput measurement

session. We observe an average round-trip time of 61ms with a standard deviation of

±3 ms across all baseline measurements.

Throughput: To calculate the achieved throughput, we initiate iPerf threads to down-

load a 10 MB file from the same AWS instance as the latency test. The measurement

is repeated 10 times, and results are saved on the client-side. We concurrently collect

packet traces at the client to compute second-order metrics such as packet loss.

Page Load Time: Load times are initiated through the plt_stream function. We

automate the loading of Web pages using Selenium [105]. For our measurements,

we use the Tranco Top 25 list [36]. To evaluate load times, we log the performance

timings of a Web page starting from navigationStart through the loadEventEnd event.

These instances of event timings support fine-grained analysis of page load times. We

set the monitoring suite to run plt_stream three times to estimate load times better.

The browser cache is automatically wiped after each Web page load to reflect the true

load time for the next iteration.

Video Streaming (YouTube): Examination of QoE metrics from on-demand video

streaming services is a challenging problem, mainly because of encrypted traffic, as
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demonstrated by prior work [208, 209]. Because of the wide proliferation of video

applications, user experience for streaming services is critical on mobile broadband.

We built the video_stream function into the monitoring suite to log QoE metrics from

YouTube videos. To execute this experiment, we first automate the loading and play-

back of the YouTube video on the Chrome browser using Selenium [105]. The video

resolution is set to auto. Then we use YouTube’s iframe API [108] to capture play-

back events reported by the video player. The API outputs a set of values that indicate

player state (not started, paused, playing, completed, buffering) using the getPlayer-

State() function. The API also provides functions for accessing information about

playtime and the remaining buffer size. To ensure uniformity across all our datasets,

we loop a 180-second video for every location and cellular operator three times.

9.3.2 Datasets

We identify times and locations in which we anticipate cellular overload (§9.4.1),

capture traces, and then compare network performance in those traces with baselines

captured in the same location during normal operating conditions (when no network

overload is likely to occur). We select spaces that are anticipated to have large gather-

ings but are unlikely to be provisioned for large crowds (i.e., city streets as opposed

to stadiums, which typically have sufficient network capacity to handle crowds).

We hypothesize that during large crowds, we will observe higher numbers of

RRCConnectionReject messages than in times of regular operation. We demonstrate

in [90] that first- and second-order metrics derived from RRCConnectionReject mes-

sages can assess overload in nearby LTE eNodeBs. In this study, we collect three

new extensive datasets from several locations across California. Further, to estab-

lish the effect of overload on network congestion and user experience, we undertake
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Table 9.1: Dataset Information

Locations Duration # LTE Frames # uniqueUeID

ADM 129 mins 1.63M 59,084
CWF 126 mins 1.89M 67,728
AIS 149 mins 2.34M 111,404

ADM Base 57 mins 316K 5,307
CWF Base 62 mins 442K 7,478
AIS Base 65 mins 396K 6,089

a measurement study to synchronously aggregate QoS and QoE metrics. Overall,

our dataset consists of over 7 million LTE frames for overload estimation, with data

collection that lasts for a cumulative duration of about 10 hours. While it is not

possible to compute the exact number of UEs in the vicinity due to the lack of inter-

national mobile subscriber identity (IMSI) number in broadcast messages for security

reasons, measuring the number of temporary unique UE IDs (uniqueUeID) in RRC

Connection Requests allows us to estimate the number of active UEs present nearby.

We concurrently collect network level (throughput, latency, and packet loss) and

application-level (YouTube streaming and page load times) measurements using the

monitoring suite. To avoid reiterations, the monitoring suite is run alongside Lumos

for all the datasets described below. Table 9.1 provides an overview of the datasets.

A detailed overview of the datasets is provided in Chapter 2 (§2.1)(Santa Fe, New

Mexico; Suburbs, San Diego; San Francisco).

9.4 Evaluation

We begin our analysis by studying the broadcast messages transmitted by eN-

odeBs. We observe that the transmission rate for RRCConnectionReject messages

can accurately indicate the network overload state. Further, we evaluate QoS and
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((a)) ADM dataset. Adams Avenue, San Diego, CA

((b)) CWF dataset. Waterfront Park,
San Diego, CA

((c)) AIS dataset. Palace of Fine Arts,
San Francisco, CA

Figure 9.2: Google aerial map of experimental datasets.

QoE metrics to learn that severe congestion is introduced during network overload,

leading to user experience degradation.

9.4.1 Overload Analysis

We analyze five RRC elements: (a) RRCConnectionReject, (b) waitTime,

(c) RRCConnectionRequest, (d) cellBarred signal and (e) number of SIB1s trans-

mitted (#SIB1). Collectively, we refer to this data as "RRC metrics." We plot the

values of these RRC metrics over thirty-second bins. We find that thirty-second bins

are appropriate for our analysis because smaller time bins have little to no relative

variation between the samples; however, we miss important data points when we

use sixty-second or larger bins. Our evaluation indicates that the rate of transmit-
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ted RRCConnectionReject messages in all locations is at least 4⇥ higher than their

respective baselines, per our initial hypothesis. Further, we discover an increase of

more than 30% in cellBarred signals and 35% higher waitTime values in overloaded

datasets (i.e., ADM, CWF, and AIS). For all of the following results, plots are color-

coded corresponding to their respective operator’s logo for readers’ convenience and

easy understanding.

Rejects

According to [195], an eNodeB may send an RRCConnectionReject in response

to the UE’s RRCConnectionRequest for exactly one of the following three reasons: (i)

the eNodeB is overloaded (e.g., severe increase in requesting UEs that the eNodeB

cannot accommodate); (ii) the necessary radio resources for the connection setup

cannot be provided (for instance, damaged equipment on eNodeB that results in

limited access to the core network); or (iii) the Mobility Management Entity (MME)

is overloaded. The MME is the key control node for the LTE access network, which

serves several eNodeBs. It is in charge of all the control plane functions related to

subscriber and session management. Once the MME detects overload, it transmits an

overload start message to the affected eNodeBs, signaling them to reject connection

request messages for non-emergency and non-high priority mobile devices originated

services.

Analysis of the reject messages sent over a fixed time interval can quantify the

level of overload in the network. Figure 9.3 illustrates the average number of reject

messages transmitted in thirty-second bins. As predicted, we notice significantly

more reject messages in the overloaded datasets (ADM, CWF, and AIS). Figure 9.3(a)

indicates that, on average, Sprint and T-Mobile networks broadcast eight times more

reject messages during ADM as compared to the ADM baseline (Figure 9.3(b)). We
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((a)) ADM ((b)) ADM_base

((c)) CWF ((d)) CWF_base

((e)) AIS ((f)) AIS_base

Figure 9.3: Number of RRCConnectionRejectmessages transmitted in thirty-second bins.
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see that AT&T and Verizon are slightly less overloaded with about a 4⇥ increase from

their respective baselines. In CWF, we observe a similar (s5⇥) increase in rejects for

all networks except T-Mobile, which reports a marginally lower increase (as shown in

Figure 9.3(c)). Finally, Figure 9.3(e) (AIS) displays considerably more reject messages

for all operators, as compared to their respective baselines in Figure 9.3(f). We posit

that this trend is due to the dense presence of participants, as demonstrated by over

2 million captured LTE frames. Upon closer inspection of the AIS dataset, we detect

5.5⇥, 9⇥, 7⇥ and 6⇥ increase in RRCConnectionRejectmessages for AT&T, Sprint,

T-Mobile and Verizon, respectively. The significant increase in reject messages clearly

indicates an upsurge in network utilization.

Phi (F) Measure

We examine a normalized second-order metric to understand better how over-

load levels vary. We define the Phi (F) measure as the ratio of the number of

RRCConnectionReject messages to the number of RRCConnectionRequest messages.

Once again, we choose a bin size of 30 seconds. The Phi measure indicates the

severity of overload, as it reflects the percentage of new users who could not con-

nect to the network. In future studies, we plan to examine the temporal variation

in Phi (or the number of new users that were rejected) to quantify the maximum

acceptable load threshold in eNodeBs. The overall trend is similar to what we ob-

served in Section 9.4.1. It also indicates the relationship between the number of

UEs (# uniqueUeIDs) to the tendency towards network overload, as is expected.

Our examination reveals a remarkable difference between overloaded datasets

(i.e., ADM, CWF, and AIS) and their respective baselines. Figure 9.4(a) shows that

Phi is more than three times that in Figure 9.4(b). This difference is even more

pronounced in the CWF dataset. Figure 9.4(c) shows an increase of about 5.5⇥, 5.5⇥,
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4.5⇥ and 3.5⇥ in Phi measure, respectively, as compared to Figure 9.4(d). Sprint

under-performs in our evaluation of Phi, with over 8⇥ difference observed between

AIS and AIS baseline. Further, we also note a considerable variance in Sprint at ADM

baseline. This result suggests that Sprint’s infrastructure at Adams Avenue is under-

provisioned for normal operating conditions compared to other networks. Overall,

Sprint’s network appears to have the least ability to handle a sudden escalation in

user demand.

Average waitTime

When we compare the average waitTime across datasets in Figure 9.5, we observe

that overloaded datasets on the left have longer waitTimes than their baselines. An

exception occurs in ADM, where Sprint produces lower waitTimes during baseline

measurements. This is likely indicative of lower loads, which would confirm our

previous hypothesis that Sprint has far fewer subscribers (at least in ADM) and yet is

still under-provisioned for local events such as the Adams Fair. Surprisingly, Verizon

shows modestly higher waitTime in CWF despite reporting relatively lower Phi levels

in Figure 9.4(c). In AIS, Sprint performs slightly worse than others, with an average

deviation of s4 seconds from its baseline. Note that the sample sizes of these dis-

tributions are proportional to the number of reject messages, as shown in Figure 9.3.

Nevertheless, all telecom providers transmit longer waitTimes during increases in

traffic demand.

Longer waitTime in ADM, CWF, and AIS is perhaps explained by the high pro-

portion of UEs (# uniqueUeIDs) in the given location. Suppose the magnitude of UEs

is great enough to result in overload. In that case, eNodeBs start curtailing overload

conditions by engaging proprietary mitigation schemes, one of which is transmitting

longer waitTime. The overall result confirms our hypothesis that these messages and
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((a)) ADM ((b)) ADM_base

((c)) CWF ((d)) CWF_base

((e)) AIS ((f)) AIS_base

Figure 9.4: Phi (F) measure in thirty-second bins.
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parameter values can be used to detect overload. The comparison supports our ear-

lier results where we compute RRCConnectionReject messages. Average waitTime

serves as an additional indicator of overloaded eNodeBs.

Omega (W) Measure

In addition to the reject messages and their corresponding waitTime, cellBarred

status is another parameter that can indicate overload in an eNodeB. The cellBarred

status transmitted within a system information block 1 (SIB1) message indicates that

the UE is not allowed to camp on a particular cell. We suspect that cells can initiate

load balancing during overload conditions by systematically preventing UEs from

anchoring on them. To evaluate our theory, we analyze cellBarred messages to

compare the percentage of these messages in our datasets.

The Omega (W) metric allows us to measure the ratio of cellBarred signals trans-

mitted to the number of SIB1 frames received in thirty-second bins. We use this

second-order metric to establish a correlation between Omega and overload. Fig-

ure 9.6 depicts the variation in Omega across all datasets. We observe an increase

of 30% in ADM and CWF datasets over their respective baselines and about a 45%

increase in AIS. This indicates a relationship between cell barring signals and over-

load, confirming our hypothesis. However, it is interesting to observe that each of the

mobile network operators has comparable Omega values in the overloaded datasets,

even though they exhibit noticeably different trends in Figures 9.3 and 9.4. This is

similar to the trend we discovered in [90]. Moreover, the AIS baseline has a 15%

decrease in Omega measure compared to other baselines. That is because the inher-

ent load-handling capacity of eNodeBs and the density of users served apparently

differ. This suggests that overloaded eNodeBs, even those that operate under dif-

ferent network conditions, prefer to consistently reject incoming connection requests
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((a)) ADM ((b)) ADM_base

((c)) CWF ((d)) CWF_base

((e)) AIS ((f)) AIS_base

Figure 9.5: Distribution of average waitTime.
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rather than broadcast unavailability (through cell barring messages), regardless of

their proprietary overload mitigation schemes.

9.4.2 Congestion Detection through Quality of Service

Given the current density of LTE deployments, the massive amount of multimedia

traffic on these networks calls into question the Quality of Service (QoS) of these

flows. The extent of QoS optimization required from a network management context

depends on the type of application being used. For instance, delay-sensitive Internet

traffic, such as live streaming video, voice over IP, and multimedia teleconferencing,

requires low end-to-end delay to maintain its interactive and live nature. On the

other hand, on-demand gaming traffic depends on end-to-end delay and achieved

throughput. One of the primary barriers to achieving usable QoS in LTE networks is

high network utilization, which can cause congestion. In this portion of our study, we

collect three QoS metrics (throughput, latency, and packet loss). For throughput tests,

we download a 10 MB file from an AWS instance; packet loss is computed from the

gathered packet traces. We use Hping3 to collect average RTT from the same AWS

instance for latency. In this section, we evaluate those QoS metrics to study the effect

of congestion resulting from overloaded LTE networks. Our analysis reveals stark

differences in the performance of congested and baseline measurements. Results

show: (i) 10⇥ – 21⇥ lower throughput, (ii) 2⇥ – 12⇥ higher latencies and (iii) 8⇥ –

11⇥ higher packet losses in congested locations.

Throughput

Throughput on mobile broadband is a crucial parameter that reflects the net-

work’s health. Comparing throughput across an overloaded network to its baseline
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((a)) ADM ((b)) ADM_base

((c)) CWF ((d)) CWF_base

((e)) AIS ((f)) AIS_base

Figure 9.6: Omega (W) measure in thirty-second bins.
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can reflect the extent of network congestion. Figure 9.7 shows the comparison of

throughput measurements for the overloaded datasets (figures at the top) and their

corresponding baselines (bottom figures). We observe that throughput decreases sub-

stantially during heavy overload conditions, suggesting network congestion. Across

all locations, AT&T and Verizon fare better than their competitors under normal

operating conditions, consistent with results from independent studies across the in-

dustry [210, 211]. Unsurprisingly, Sprint has the lowest throughput average across

all our datasets, congested or otherwise. Network congestion leads to 24⇥ reduc-

tion in throughput measurements, as shown in Figure 9.7(c). In the congested ADM

dataset, we observe higher variability associated with the Verizon and AT&T net-

works. This suggests that congestion mitigation schemes employed by these net-

works are marginally more effective, as demonstrated by higher median throughput

values in Figure 9.7. AT&T and Verizon maintain steady rates across all baseline

datasets despite serving a disproportionate fraction of users (more than 55% contri-

bution in LTE frame captures).

Latency

With the advent of LTE and 5G networks, stringent requirements have been im-

posed on latency and reliability [212] with claims by some operators to introduce

ultra-low latency on "advanced" LTE networks [213]. Thus, consistent low round-

trip time latencies indicate a well-functioning network [97]. We collect over 200

latency datapoints for each operator at every location (i.e., ADM, CWF, and AIS).

Table 9.2 shows the average round-trip times across congested and baseline mea-

surements. We learn that during overload conditions at ADM, average RTT almost

doubles, which is reflective of network congestion. We observe elevated levels of

congestion in CWF, which reports latencies as high as 14⇥ (T-Mobile) in its baseline
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a. ADM

b. CWF

c. AIS

Figure 9.7: Throughput measurements across all locations. Figures at the top are
from congested datasets while figures at the bottom correspond to baseline mea-
surements.
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Table 9.2: Round-trip Times

Locations ATT Sprint T-Mobile Verizon

ADM 123 ms 112 ms 151 ms 138 ms
CWF 703 ms 3237 ms 857 ms 202 ms
AIS 191 ms 198 ms 134 ms 174 ms

ADM Base 62 ms 64 ms 62 ms 63 ms
CWF Base 63 ms 63 ms 61 ms 62 ms
AIS Base 59 ms 67 ms 63 ms 61 ms

measurements. Sprint’s network appears exceedingly congested, with an average

RTT 48⇥ higher than the baseline. Another notable observation is AIS, where even

with the densely populated users and higher demand that lead to the lowest average

throughput (§9.4.2), the average RTT for AT&T, Sprint, and Verizon were about 3⇥

the baseline values. This congestion level explains the meager average throughput

achieved in Figure 9.7(c). These tests provide valuable insights into understanding

the effect of overload in LTE networks, manifesting in congestion and subsequent

degradation in user experience.

Packet Loss

Packet loss in cellular networks is more prominent than in wired networks [141].

Loss can happen due to network congestion and transmission errors [141]. We com-

pare packet loss rate during crowded events with network overload (§9.4.1) and con-

trast these loss rates with those observed during instances of low network utilization.

From Table 9.3 we infer that packet loss increases during overload conditions. We ar-

gue that this elevation in loss rate can be attributed primarily to congestion since

our physical placement for data collection remains identical in ADM/ADM base and

CWF/CWF base; in AIS base, we position ourselves s30 meters from our original
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Table 9.3: Packet Loss Rate

Locations ATT Sprint T-Mobile Verizon

ADM 0.61% 1.44% 1.92% 1.63%
CWF 1.92% 3.47% 2.69% 0.86%
AIS 2.14% 1.73% 1.38% 1.15%

ADM Base 0.15% 0.35% 0.17% 0.22%
CWF Base 0.26% 0.14% 0.39% 0.10%
AIS Base 0.21% 0.16% 0.20% 0.08%

location. In addition, we compare the reference signal received power (RSRP) values

logged during the tests within each pairing of our datasets (congested and baseline)

to ensure uniformity in radio measurements. We do not claim to have eliminated

all aspects of the wireless medium that could contribute to the loss rate. For in-

stance, there could be temporary link failures or high bit-error rates. Instead, our

focus is to eliminate apparent wireless channel discrepancies that could affect our

measurements, such as differential RSRP values. We observe that Sprint’s network

experiences 25⇥ more packet loss compared to its baseline in CWF, whereas other

networks have escalations between 6⇥ and 8⇥. In AIS, we see a mean increase of

10⇥ over the baseline, whereas ADM reports a 6.5⇥ escalation in packet loss.

9.4.3 Congestion Detection through Quality of Experience

Quality of Experience (QoE) is one of the leading concepts for network manage-

ment and performance evaluation in operational networks. Among the most relevant

QoE-centric services consumed by end customers in mobile networks, Web surfing

and mobile video take the prime spots [214]. In particular, video now represents over

three-quarters of the global IP traffic [214]. In this section, we study the performance

degradation introduced by congestion as overload increases on LTE networks. Our
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results indicate: (i) 6⇥ – 38⇥ higher start-up delay, (ii) 3⇥ lower video quality, (iii)

3⇥ – 6⇥ higher stall ratio and (iv) 33% – 56% lower residual buffer levels in the

congested dataset.

Video Streaming: YouTube

Start-up delay: Start-up delay is the time lag between user action to play video and

video starting to play on the screen. This delay usually corresponds to how quickly

the HTTP Adaptive Streaming (HAS) client can fill the threshold buffer required

for playback. For instance, we observe diminishing throughput during congestion

in Figure 9.7. Such scenarios would likely require additional time to download the

same number of video chunks that go into the video buffer than in an uncongested

network, leading to higher start-up delays. Here we note that the start-up delay

does not convey any information about the video resolution chosen for playback.

Figure 9.8 reports the delay incurred during our measurement campaign. Upon

examination, we observe a significant increase in delay as overload increases (figures

at the top), signaling heavy congestion in the networks. We see that T-Mobile and

Sprint have the most heavy-tailed distributions (outliers on either end of the box),

which indicate variable delay. This could be due to either variability in network

throughput or client fallback to lower resolution video, possibly after failed attempts

to achieve higher bit-rates (or fetch higher resolution chunks).

Video Quality: With the proliferation of high resolution displays on smartphones

and tablets in the past few years, it is now possible for users to take advantage

of high-definition videos on their devices, with some mobile devices that offer 4K

ultra high-definition capability. Prior studies have illustrated that a drop in video

resolution has a notable adverse effect on user experience, such as sustained frustra-

165



Estimation of Congestion from Cellular Walled Gardens using Passive Measurements Chapter 9

a. ADM

b. CWF

c. AIS

Figure 9.8: Start-up delay during YouTube streaming. Lower is better.
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a. ADM

b. CWF

c. AIS

Figure 9.9: Achieved video quality during YouTube streaming. Higher is better.
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tion [215]. Figure 9.9 depicts the playback resolution of the YouTube video, sampled

at one-second granularity. During our measurements, we ensure that the video used

for playback is uniform across all our datasets. However, the resolution is set to auto.

Stated otherwise, final playback resolution and switches are dependent on network

conditions and changes in congestion levels. While most of the baseline measure-

ments (Figure 9.9, plots at the bottom) indicate near full-HD (1080p) rendering of

the video, the congested dataset (plots at the top) reports a severe drop in resolu-

tion. AT&T and Verizon have near consistent resolution rendering during conges-

tion, while T-Mobile and Sprint networks have wide variability. This is a significant

finding. Variability in video resolution implies constant quality switches, which is

usually perceived as an acute case of performance degradation in QoE [112, 215].

Overall, T-Mobile has the most significant number of quality switches across all loca-

tions (congested and baseline).

Stall Ratio: Re-buffering events on video streaming applications usually translate

to unusable service [215]. Among other network artifacts, congestion can increase

re-buffering events while streaming online videos [103]. If re-buffering happens,

the user notices interrupted video playback, commonly referred to as stalling. The

stall ratio is the amount of time the video stalls during the playback expressed as

a fraction of total playback time, shown in Table 9.4. Although not all telecoms

report stalling across the three locations (i.e., ADM, CWF, and AIS), those have a

significantly higher ratio than their corresponding baselines. For instance, we see a

60⇥ increase stall ratio on the Verizon network in CWF. Similarly, our analysis reveals

a 30⇥ and 3⇥ increase on the T-Mobile network at AIS and CWF, respectively. AT&T

and Verizon report a non-zero stall ratio across all congested datasets. Despite its

poor performance in start-up delay and video quality, Sprint has the least stalled
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Table 9.4: YouTube stall ratio percentage.

Locations ATT Sprint T-Mobile Verizon

ADM 4.56% 0% 0% 0.85%
CWF 2.3% 0% 3.07% 18.53%
AIS 3.41% 0.29% 7.27% 2.49%

ADM Base 0% 0% 0% 0%
CWF Base 0.68% 0% 0.98% 0.3%
AIS Base 0% 0% 0.22% 0.44%

video, with no stalls reported in either ADM or CWF locations.

Buffer Size: The streaming client employs a playout buffer or client buffer, whose

maximum value is buffer capacity, to temporarily store chunks to absorb network

variation. To ensure smooth playback and adequate buffer level, the client requests

a video clip chunk by chunk using HTTP GET requests and dynamically determines

the resolution of the next chunk based on network conditions and buffer status.

When the buffer level is below a low threshold, the client requests chunks as fast

as the network can deliver to increase the buffer level. The playback stalls when

the buffer is empty before the end of the playback is reached. From the perspective

of YouTube video playback, a session can contain two exclusive regions: buffering

and playing. The buffering region is defined as the period when the client is re-

ceiving data in its buffer, but video playback has not started or is stopped. The

playing region is the period when video playback is advancing regardless of buffer

status. In the playing region, the video state can be either buffer increase, decay, or

steady. Figure 9.10 shows the distribution of buffer size captured during YouTube

streaming sessions. Congested locations demonstrate smaller buffer sizes than the

baseline measurements. The median difference in ADM, CWF, and AIS is 17.73 sec-

onds, 23.51 seconds, and 21.1 seconds, respectively. Verizon’s median difference is
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the lowest among all the operators we evaluate, at about 12.7 seconds. On the other

hand, Sprint registers the widest variance with a median difference of more than 30

seconds.

Page Load Time

Web performance has long been crucial to the Internet ecosystem since a signif-

icant fraction of Internet content is consumed as Web pages. A considerable share

of applications such as Web, e-mail, or just non-native social media access implies

waiting times for their users, which is reflective of the responsiveness from the re-

quested server. Responsiveness is also a function of network conditions, such as

congestion [216]. Thus, end-user quality perception in interactive data services is

dominated by Web page loading times; the longer they wait, the lower the user sat-

isfaction [216]. Moreover, studies have shown that perceived time for users accessing

the Web can be exceedingly magnified for actual chronological time, thus degrading

the perceived performance even further [115].

Page load times are depicted in Figure 9.11. From our evaluation, we learn that

overloaded eNodeBs experience higher congestion levels that lead to a stark contrast

between ADM, CWF, and AIS load times and their respective baselines. T-Mobile

stood out as the worst-performing network across all congested datasets. AT&T,

Sprint, and Verizon exhibit deteriorating performance in CWF, which can be ex-

plained by excessive round-trip times detected in Table 9.2. In the experimental

setup, we set the timeout value to 30 seconds. Our choice for this timeout value is

derived from Shaik et al. [217], who empirically found that users tend to get tired

of wait times by terminating their Web sessions typically after 10-20 seconds. We

present the results of Web page timeouts in Table 9.5. Not surprisingly, T-Mobile

produces the highest number of timeouts in all congested datasets. Our examina-
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((a)) ADM ((b)) ADM_base

((c)) CWF ((d)) CWF_base

((e)) AIS ((f)) AIS_base

Figure 9.10: Cumulative distribution of buffer size (seconds) during YouTube test.
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((a)) ADM ((b)) ADM_base

((c)) CWF ((d)) CWF_base

((e)) AIS ((f)) AIS_base

Figure 9.11: Page load times of Tranco top 25 websites on all operators.
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Table 9.5: Page load time-outs

Locations ATT Sprint T-Mobile Verizon

ADM 5.33% 6.67% 50.67% 8%
CWF 9.33% 51.89% 64% 42%
AIS 6.67% 5.33% 73.33% 10.67%

ADM Base 0% 0% 0% 0%
CWF Base 0% 0% 0% 0%
AIS Base 0% 0% 0% 0%

tion reveals that the CWF dataset performs poorly than other congested datasets. In

AIS, about three-quarters of websites on T-Mobile were either unreachable or could

not load required objects before the timeout, indicating severe congestion across the

network.

9.4.4 Discussion

We acknowledge that adding ground truth measurements from carriers would

have provided another layer of validation. However, we could not obtain this data

due to providers’ strict policies against sharing client-related data. Instead, we use

our validation methodology (using active measurements to characterize performance

and detect congestion) to provide validation from the users’ perspective. We believe

that our active measurements produce results similar to those demonstrated by car-

rier ground truth data. Further, Lumos requires prior baseline measurements to infer

the network condition (congested/overloaded). This is despite the 15–20% reject rate

observed across our datasets. Further investigation is needed to ascertain whether

these baseline measurements apply to other locations and networks.
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9.5 Conclusion

In this work, we propose a novel method to assess congestion in nearby LTE eN-

odeBs, utilizing off-the-shelf hardware without requiring cooperation from the cellu-

lar provider. Our analysis offers convincing evidence that messages broadcast by the

eNodeB can be used to detect network congestion by estimating cellular overload.

In future work, we will explore how passive overload inference can be leveraged

in a system for automated overload mapping using ground-based data collection

and Unmanned Aircraft Systems (UASs), independent of collaboration from a cel-

lular provider. Software-defined radios on UASs have been shown as effective tools

for rapidly deployable LTE coverage mapping [35], and we are exploring expand-

ing aerial capabilities to include overload estimation. Such tools can be leveraged

by regulators and policymakers and allow targeted deployment of alternative com-

munication channels. While Lumos accurately estimates network overload and con-

gestion, we investigate various methods to infer the service quality at UEs through

QoE-estimation in the next chapter.
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Chapter 10

Too Late for Playback: Estimation of

Video Stream Quality in Rural and

Urban Contexts

10.1 Introduction

More than 60 million people reside in rural regions in the United States [218].

However, cellular deployment is often guided by economic demand, concentrating

deployment in urban areas and leaving economically marginalized and sparsely pop-

ulated regions under-served [24]. Few prior studies have focused on assessing mobile

broadband in rural areas of the U.S.; there is a lack of accessible datasets that are com-

prehensive (including network-level and application-level traces) and representative

and inclusive of rural demographics. As a result of the COVID-19 pandemic, the

assessment of the quality of experience (QoE) for applications delivered over mobile

broadband has become urgent as stay-at-home orders, and rapid movement to online

schooling and work-from-home protocols increase the demand for applications that
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are known to be sensitive to network quality, such as video streaming and interac-

tive video chat [219]. As a result, communities without access to usable, high-speed

broadband, such as many rural communities, are particularly disadvantaged [25, 26].

Unfortunately, the evaluation of user quality of experience for video streaming

applications accessed over LTE in regions where people are most likely to be smart-

phone dependent [45, 24, 6] poses a significant scalability challenge. QoE metrics col-

lection over LTE networks in a geographic area requires time and resource-intensive

measurements for each network provider. As a result, experiments at a single ge-

ographic point can be lengthy. Moreover, in rural areas, obtaining LTE Internet

measurements in places where people are likely to use mobile broadband (e.g., at

their homes or along local transportation corridors) can be challenging [35], as places

of interest are far apart (requiring more resource-intensive targeted measurement

campaigns) and less densely populated (prohibiting representative crowd-sourcing

measurement efforts). In this context, we ask the following research question: How

can we infer the QoE for video streaming applications over LTE at scale?

While few existing datasets measure QoE in rural communities, many public and

proprietary datasets report quality of service (QoS) metrics, such as reference signal

received power (RSRP) or throughput. These metrics are typically reported indepen-

dently and are measured over LTE networks in a wide range of locations throughout

the U.S. and globally [33, 210, 34, 129, 220, 122]. We argue that the wealth of LTE-QoS

data points across the U.S. represents a key resource that can be leveraged to assess

QoE broadly. While measuring QoE at scale in LTE networks presents significant

challenges, measuring QoS at scale in LTE networks has already been demonstrated

to be feasible. Hence, our goal and key contribution is a methodology that can leverage

low-cost QoS measurements to predict QoE.

A diverse set of network measurements representative of a wide range of condi-
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tions is needed to study the correlation between mobile QoS and QoE performance.

As such, we undertook an extensive measurement campaign to collect 16 datasets

comprised of network traces from the Southwestern U.S. for four major telecom op-

erators: AT&T, Sprint, T-Mobile, and Verizon. Our datasets vary along two primary

axes: population density and network load. We collected LTE network measurements

within multiple rural and urban communities to obtain data from varied population

densities. For variable network load, we collected LTE network traces from crowded

events in urban locations that resulted in atypically high volumes of network utiliza-

tion [90] and, consequently, congestion. As a baseline, we also collected traces from

the exact urban locations during typical operating conditions. Our datasets have

broad spatial and temporal variability but can be classified into three primary cate-

gories: under-provisioned (rural), congested (congested urban), and well-provisioned

(baseline urban).1 We leverage these varied datasets to demonstrate the generality of

the inference method. Our analysis shows that predictive models can be used to infer

video QoE metrics using low-cost QoS measurements so that QoE can be more easily

and scalably determined within difficult-to-assess regions.

Our key contributions and findings include:

• We collected sixteen measurement datasets2 from twelve locations through an

extensive ground measurement campaign within the Southwestern U.S. Our

data points represents three different network conditions: under-provisioned

(rural), congested, and well-provisioned urban, and include over 32 Million

LTE packets. (§11.2);

• We develop and evaluate a comprehensive set of predictive models that infer

1Through extensive analysis, we verified that our datasets are representative of the network char-
acteristics we anticipated: well-provisioned, congested, and under-provisioned. A detailed analysis is
provided in Chapter 4.

2The subset of our dataset that we have permission to release is available at [221].

177



Too Late for Playback Chapter 10

video QoE from low-cost QoS measurements such as RSRP and throughput.

Our analysis reveals that predictive models can infer video QoE with an accu-

racy of at least 80% across all locations and network types (§10.3);

• We validate our models across multiple video types from various genres. Fur-

ther, we demonstrate the utility of low-cost RSRP measurements for inferring

video QoE (§10.3).

10.2 Methodology and Datasets Overview

QoS metrics, such as received signal strength, latency, throughput, and packet

loss, capture the state of network connectivity. However, while QoS indicates net-

work state, there can be a disconnect between QoS and user experience. QoS network

metrics are not Pareto-optimal; one element can get better or worse without affecting

the other. Consequently, estimation of user experience requires incorporating mul-

tiple network measures, which may be unique to time, space and application. Note

that while the definition of QoE can vary depending on the vantage point from which

measurements are taken, we only focus on application-level QoE. Our measurements

are active end-user device/passive user as defined in [222].

10.2.1 QoS and QoE Metrics

This section describes the QoS and QoE metrics we collected (and estimated) for

this measurement study, as summarized in Table 10.1.

Quality of Service Metrics: We collect reference signal received power (RSRP) and

throughput synchronously on the same user equipment (UE). RSRP is defined as

the linear average over the power contributions (in Watts) of the resource elements
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Table 10.1: Overview of QoS and QoE metrics at each location, aggregated across
available providers.

Type Metric Test Interval Number of Datapoints Tools

QoS RSRP 1 second 2160 Network Monitor
Throughput 1 second 2160 iPerf

QoE Video resolution 1 second 2160 Selenium, iframe API
Resolution switches 1 second 2160 Selenium, iframe API
Rebuffering events 1 second 2160 Selenium, iframe API

that carry cell-specific reference signals within the measurement frequency band-

width [92] and, as illustrated by [95], is widely accessible through mobile operat-

ing systems. We record instantaneous RSRP readings from the UEs every second

through the Network Monitor application [79]. We measure throughput by fetching

a pre-specified 500 MB file from an AWS instance in Virginia using iPerf over TCP

to download the file. The large file size allows the data traffic to fill the pipe and

minimize the effect of a slow start. We log the packet traces at the client during the

iPerf tests to sample throughput at 1-second intervals.

Quality of Experience Metrics: We focus on streaming video, currently the most

heavily used QoE-centric service in mobile networks [98]. Internet video stream-

ing services typically use Dynamic Adaptive Streaming over HTTP (DASH) [99] to

deliver a video stream. DASH divides each video into time intervals known as seg-

ments or chunks, encoded at multiple bit rates and resolutions. We gather two QoE

metrics to analyze video stream quality: resolution switches and rebuffering events. For

resolution switches, we compute the number of consecutive samples with a different

resolution as a percentage of the total number of samples collected during the video.

We measure at one-second granularity, capturing resolution switches between video

chunks that are typically 4–5 seconds long [102]. Finally, rebuffering occurs when

the video pauses while the application buffer waits to accumulate enough content to
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resume playback. We record the video state (rebuffering event or normal playback)

every second.

10.2.2 Measurement Suite

We run our measurement suite on Lenovo ThinkPad W550s laptops, each teth-

ered to their own Motorola G7 Power (Android 9) via USB to measure cellular per-

formance. The cellular plans on all our cellular user equipment (UE) have unlimited

data and are hot-spot enabled to effectively achieve the same level of performance

as we would on the mobile device. We run our measurement suite on laptops teth-

ered to phones; this configuration gives us the same application performance while

facilitating ease of programming, data extraction, and unification of application-level

measurements.

We choose YouTube as the streaming platform because of its popularity in the

U.S., capturing over 88% of the mobile market [107]. To collect video QoE metrics,

we run a 3-minute clip of a Looney Tunes video [223] three times across each of the

four LTE providers at each location; we exclude from our results the sessions that

experienced playback errors during execution. We chose this particular video due to

its mix of high and low action scenes, which result in variable bitrates throughout

the video (typically, high action scenes have a higher bitrate than low action scenes).

After testing multiple playback duration, we observed that a 3-minute window was

adequate for the playback to reach a steady state while long enough to capture re-

buffering and resolution switches. To infer video QoE, we collect the input features

(RSRP and throughput) synchronously on a separate device so as not to bias the

video streaming measurements. Synchronous measurements of throughput, RSRP,

and QoE metrics are required to train learning algorithms to infer video QoE for a

future time instance. We use different servers for throughput and YouTube tests to
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obtain concurrent QoS and QoE measurements. Our setup reflects the real-world

scenario where throughput test servers and YouTube servers are separate while si-

multaneously affected by varying conditions from within the cellular network [97].

In LTE, each bearer (connection from a UE) enjoys a relatively isolated data tunnel

before the egress from the packet gateway, located inside the core [224]. This reduces

contention among UEs competing for resources at a single eNodeB, and as a result,

we can accurately record QoS and QoE metrics on two separate devices.

To execute this experiment, we first automate the loading and playback of the

YouTube video on the Chrome browser using Selenium [105]. The video resolution

is set to auto. Then we use YouTube’s iframe API [108] to capture playback events

reported by the video player. The API outputs a set of values that indicate player

state (not started, paused, playing, completed, buffering) using the getPlayerState()

function. The API also provides functions for accessing information about playtime

and the remaining buffer size.

10.2.3 Description of Datasets

We collected 16 datasets from 12 locations across the Southwestern U.S. Eight of

the datasets were collected from rural locations with sparse cellular deployment.

An additional eight datasets were collected from four urban locations. In each

urban location, we collect two datasets: one during a large event or gathering, in

which we expect cellular network congestion to occur (these datasets are marked

with _Cong); and a second during typical operating conditions. We call the latter

dataset the baseline for that location (these datasets are marked with _Base). Hence,

our 16 traces are broadly classified into three categories: rural, congested urban,

and baseline urban. The details of each dataset are summarized in Table 10.2. The

designation of each location as rural or urban is based on Census Bureau data [38].
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Table 10.2: Summary of Datasets
Location Date # LTE Packets Type Carriers⇤

Rural_1 May 28 2019 3.18 Million Rural V,A,T,S
Rural_2 May 29 2019 1.38 Million Rural V,T
Rural_3 May 28 2019 2.03 Million Rural V,A,T,S
Rural_4 May 30 2019 2.16 Million Rural V,A,T,S
Rural_5 May 30 2019 2.27 Million Rural V,A,T,S
Rural_6 May 31 2019 2.33 Million Rural V,A,T,S
Rural_7 May 31 2019 1.26 Million Rural V,T
Rural_8 Jun 01 2019 2.83 Million Rural V,A,T,S

Urban_1_Cong Sep 22 2019 2.25 Million Urban, Congested V,A,T,S
Urban_1_Base Sep 28 2019 1.92 Million Urban, Baseline V,A,T,S
Urban_2_Cong Sep 29 2019 2.51 Million Urban, Congested V,A,T,S
Urban_2_Base Sep 30 2019 1.97 Million Urban, Baseline V,A,T,S
Urban_3_Cong Sep 21 2019 2.65 Million Urban, Congested V,A,T,S
Urban_3_Base Sep 30 2019 2.13 Million Urban, Baseline V,A,T,S
Urban_4_Cong Sep 25 2019 2.18 Million Urban, Congested V,A,T,S
Urban_4_Base Sep 26 2019 2.08 Million Urban, Baseline V,A,T,S
⇤This column lists the mobile carriers present in each data set (some areas had no coverage for

particular network operators). V: Verizon, A:AT&T, T:T-Mobile, S: Sprint.

We collect and analyze over 32.7 Million LTE packets through these measurement

campaigns. Note that the “Number of Datapoints" column shown in Table 10.1 indi-

cates the QoS/QoE datapoints gathered by the application, while the “# LTE Packets"

column in Table 10.2 refers to the number of packets collected in the trace files.

10.2.4 Video QoE Measurement Scalability Challenges

Collection of ground-truth cellular network measurements, as we explore further

in §10.4, is a challenging task for multiple reasons. First, it requires the physical

placement of the measurement device at the location to be studied. While many

large, publicly accessible datasets incorporate some QoS measurements, QoE mea-

surements, particularly in remote regions, are much more difficult. Second, gather-

ing ground truth data to assess video QoE requires an active connection to stream a

large encoded video file. This consumes a substantial amount of bandwidth, compu-
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tational power, memory, and battery, due to the simultaneous use of LTE modems,

display, CPU, and GPU [225] on the user device. For instance, streaming applications

consume memory to load the video and require accelerated processing to decode and

display the stream from the video server. Unlike QoS metrics, which can often be

collected in the background through execution by backend scripts, the high resource

cost of QoE measurements for the end-user makes this data difficult to crowd-source.

In Figure 10.1 we show the resource consumption during one hour of RSRP and

throughput (QoS) measurements, compared to one hour of video streaming (QoE),

on our data collection phones. As seen in the figure, the resources consumed by the

QoE measurements were significantly higher, preventing background data collection

and draining the device battery more rapidly.

Rural regions span large geographic areas with terrain that is often hard to ac-

cess. QoS data from public sources already struggle to cover these areas. In particu-

lar, crowd-sourced datasets are data-rich in regions with higher density populations.

These regions tend to be either urban areas or other areas frequented by travelers

(i.e., highways, national parks, etc.). Rural communities, by contrast, with their lower

population densities, are often under-represented in crowd-sourced datasets. Yet it is

precisely these regions where under-provisioned networks typically exist and hence

a. CPU Load b. Memory utilization c. System temperature

Figure 10.1: Device resource consumption during either RSRP and throughput mea-
surements only, or during video streaming.
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where data is urgently needed. We need a method to improve QoE measurement

scalability to assess QoE in these remote areas effectively. We address this challenge

in the next section, where we show how predictive models can use the less expensive

QoS measurements to infer QoE for streaming video on mobile broadband networks

in various environments.

10.3 Inferring QoE Metrics for Video

As discussed in §10.2.4, the collection of QoS measurements is less resource con-

sumptive and hence more scalable than video QoE measurements. We now describe

our approach to infer QoE metrics for video streaming sessions using low-cost QoS

metrics.

10.3.1 Learning Problem

Our learning problem aims to infer QoE metrics using a sequence of throughput

and RSRP (QoS metrics) data input. The objective is to build models with apprecia-

ble performance that would work in various network conditions and different region

types (e.g., rural and urban locations). These models could be used to predict appli-

cation QoE (in our case, video streaming) at a particular location. We use supervised

learning to train two different binary classifiers. The first classifier infers whether the

video’s state is stalled or normal; the second infers whether there is any change in

video resolution. Both models perform the classification task every second.

Input: The learning model takes a sequence of RSRP and throughput values as input.

Both of these metrics are low-cost measurements and easily accessible. Given how

adaptive bitrate (ABR) video streaming players operate, the changes in throughput

and RSRP values have a delayed impact on QoE metrics. For example, a decreased
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available throughput will force the video streaming player to use the buffered data

before stalling.

As part of feature engineering, we had to determine how many RSRP and through-

put values to use as input for the learning model. Intuitively, the use of longer se-

quences will improve accuracy. However, longer sequences also increase the learning

model’s complexity, which requires more training data to avoid over-fitting. After

varying n = 0 ! 180 (total playback time of a session), we found that using a

sequence of three throughput/RSRP values enabled us to strike a balance between

model complexity and accuracy. A typical approach to assessing throughput would

be to log continuous measurements for a long time and analyze the resulting mean/-

mode of the distribution. However, our results (§10.3.3) indicate that we can infer the

video quality from only a 3-second sample. This has the added benefit of reducing

the resource utilization at the client device, such as data consumption and battery

drainage, while accurately inferring the video stream quality.

Output: We train two separate binary classifiers to predict the video state and

change in resolution at the granularity of one second. Predicting QoE metrics at such

fine granularity enables opportunities to infer QoE with limited training data. Given

the input features, our models infer how likely it is for the video stream to experience

either a video stall or a resolution change in the next instant.

Training data: Our dataset consists of 32,596 data points. Each data point has input

values: a sequence of three RSRP and throughput values, as well as two boolean

labels: video state (playing or stalled) and resolution switches (yes–resolution will

change; no–resolution will not change). We collected this dataset through our mea-

surement campaign by conducting 181 video streaming sessions across multiple loca-

tions (§10.2.3). For each classifier, we label the output training samples into either of
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Table 10.3: Breakdown of training and test set samples for both classifiers.

Training Set Test Set
Classifier Type Target Metric Class 0 Class 1 Class 0 Class 1

Classifier 1 Rebuffering Event 22,175 642 9,504 275
Classifier 2 Resolution Switching 22,490 327 9,639 140

the two classes: class 0 is when playback is normal and devoid of any event (rebuffer-

ing or resolution switch), and class 1 is when there is an event. We performed the

classification task by splitting the entire dataset into a ratio of 70:30 training to test

sets, as described in Table 10.3. We split the overall training dataset into training and

validation sets (80:20). We chose the samples proportionate to the size of each dataset

category (rural, congested urban, and baseline urban). We present the models’ per-

formance per location, train the models on specific locations, and test on others not

included in the training. We do not make any distinctions between operators since

an operator-agnostic evaluation is a more comprehensive reflection of coverage and

QoE at a particular location.

10.3.2 Learning Algorithm

We now present the learning models we used for the learning problem, our model

training approach, and the method for addressing the inherent class imbalance.

Learning models: We trained a wide range of off-the-shelf classifiers for this learning

problem to identify the classifier that strikes the best balance between performance

(precision, recall, etc.) and generalizability. First, we trained simpler classifiers, such

as gradient boosting [226], bagging [227], random forest [228], ARIMA [229], Ad-

aBoost [230], etc. These classifiers offer better generalizability at the cost of perfor-

mance. We also trained neural-network (NN)-based classifiers, such as a convolu-
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tional neural network (CNN) [231] and recurrent neural network (RNN) [232] (in

particular, LSTMs [233] and GRUs [234]), that offer higher accuracy but require con-

siderable training data to avoid over-fitting.

Setup: We ran all the classifiers on a local machine that runs Ubuntu 18.04, powered

by a 4-core i7-7700 CPU (3.60 GHz) with 64GB RAM and 8GB NVIDIA RTX 2080

GPU. We implemented the simpler classifiers using the scikit-learn 0.21 [235] library

of Python, and NN-based models using Keras with Tensorflow backend [236]. We

used four fully-connected layers for the NN-based classifiers. For RNN-LSTM-Focal

(see Table 10.4), the network utilized 64, 32, and then 16 hidden neurons, in addition

to a final output layer with hyperbolic tangent activation function. We used Grid

Search [237] to determine the ideal hyper-parameter configuration for each neural

network. To avoid over-fitting, we use a dropout of 0.4 while training with the Adam

gradient descent optimizer [238]. We ran the RNN-LSTM model for 120 iterations

with a batch size of 64.

Class-imbalance problem: As rebuffering and changes in the resolution are rare,

most of our data points are normal, i.e., they do not have any rebuffering or resolution

switching events. As a result, our dataset has the class-imbalance problem, typical

for most anomaly detection problems. To address this issue, we applied the sampling

technique SMOTE [166] to balance the classes artificially. However, such an approach

reduces the number of data points we can use for training the classifier, affecting

the accuracy. With SMOTE, we observed no improvements in accuracy with simpler

learning models (e.g., SVM, random forest, etc.) and lower accuracy for NN-based

classifiers. Therefore, for the NN-based classifiers, we adapted a new technique that

has proven to increase classification accuracy in datasets that suffer from the class-

imbalance issue for the object detection problem [167]. This technique addresses the
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class-imbalance problem by reshaping the standard cross-entropy loss to lower the

weights for the majority class [167]. It also introduces the concept of focal loss that

prevents the majority class from overwhelming the classifier during training. The

focal loss can be represented as:

FL(pj) = a(1 � pj)
glog(pj) (10.1)

Here, FL is the focal loss function, and pj is the softmax probability of the jth class for

a particular observation. a and g are two regularizing parameters. This loss function

adds more importance when the network predicts a minority sample as opposed to

the overly represented sample—making it ideal for performing classification on an

imbalanced dataset.

10.3.3 Results

We now present the performance of the different classifiers we used for this learn-

ing problem. We also quantify their performance across different locations and video

types for those that performed well. Finally, we quantify the contribution of an LTE-

specific QoS metric, RSRP, in improving the accuracy of our learning models.

Performance: We analyze the performance of learning models in terms of accuracy,

precision, recall, and training time. Table 10.4 summarizes the performance of all

classifiers we explored. We observe that the accuracy of the rebuffering-event clas-

sifier is better than the resolution-switching one, as depicted in Figure 10.2. This

difference is attributable to the smaller number of anomalous data points (resolu-

tion switches) in the data (see Table 10.3). In terms of accuracy, RNN-LSTM-Focal

performs best. This is expected as this model makes the best use of the sequence
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Table 10.4: Performance metrics of the classification models.

Rebuffering Events Resolution Switching
Models Accuracy Precision Recall Accuracy Precision Recall

Boosting 0.87 0.88 0.88 0.84 0.85 0.84
Bagging 0.80 0.82 0.82 0.71 0.73 0.72
Random Forest 0.85 0.87 0.86 0.79 0.80 0.80
ARIMA 0.81 0.81 0.81 0.77 0.78 0.78
Decision Trees 0.80 0.80 0.98 0.75 0.75 0.75
Extra Randomized Tree 0.77 0.78 0.77 0.72 0.73 0.72
AdaBoost 0.62 0.60 0.63 0.51 0.55 0.53
Support Vector Machine 0.72 0.72 0.73 0.70 0.71 0.70
K-nearest neighbors 0.60 0.56 0.62 0.58 0.57 0.49
CNN 0.72 0.73 0.73 0.68 0.69 0.69
CNN - Focal 0.84 0.85 0.84 0.81 0.81 0.81
RNN - LSTM 0.82 0.83 0.83 0.80 0.79 0.80
RNN - LSTM - Focal 0.89 0.89 0.89 0.86 0.86 0.87
RNN - GRU 0.82 0.82 0.84 0.80 0.82 0.82
RNN - GRU - Focal 0.86 0.86 0.85 0.83 0.84 0.84

of throughput and RSRP values and is best suited to handle the class imbalance

problem. On the other hand, though RNN-LSTM-Focal has the highest accuracy, the

accuracy gains are marginal when compared to simpler learning models, especially

Boosting. Given these marginal gains and the complexity of training NN-based classi-

fiers (5 vs. 214 seconds), we use the Boosting classifier to characterize the performance

across different network and video types.

Generalizability: We now quantify the generalizability of the Boosting classifier.

First, we show how its performance varies across different network types. Figure 10.2

depicts the performance of inferring video rebuffering using Boosting at each loca-

tion. We observe that the performance differences across different network types

are marginal (< 2% deviation between categories). We saw similar trends for the

Boosting-based classifier when inferring resolution switching.

Our initial measurements only collected the QoE metrics for the Looney Tunes

video. We collected the QoS/QoE data for 108 additional video streaming sessions

(48,825 new data points) at our research facility (baseline-urban) to verify that our re-
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a. Rebuffering events

b. Resolution switching

Figure 10.2: Performance of Boosting across different locations.

sults generalize to other video types. We selected 18 different videos from seven gen-

res: action (trailers/movie clips), music videos, sports, online learning content, news,

documentary, and animation (including the original Looney Tunes video) [239]. We

selected the top trending videos for each genre. Given that the videos were of varying

duration, we capped each measurement to a maximum of ten minutes. We streamed

each video over three different telecom providers (AT&T, T-Mobile, and Verizon); we

could not obtain Sprint measurements because of the closure of Sprint retail outlets

due to the COVID-19 pandemic. Figure 10.3 shows the performance of Boosting for

both video rebuffering and resolution switching. We observe marginal variations

(< 1.5% and < 3% deviation for rebuffering and resolution switching, respectively)
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a. Rebuffering events

b. Resolution switching

Figure 10.3: Performance of Boosting across different video genres.

in accuracy across different video genres, implying that our learning model general-

izes reasonably well to different video types. Note that we do not claim that these

results generalize for other video players (e.g., Hulu, Netflix), client platforms, or

devices; we plan to quantify the performance of our learning models for other plat-

forms, devices, and non-YouTube videos in the future. Finally, we do not claim to

have developed models that generalize across other locations or network conditions

– rather, we use this study to demonstrate the feasibility of inferring video QoE at

scale within a limited but diverse dataset.

Ablation Study: We performed an ablation study to understand better the impact

of an LTE-specific metric (i.e., RSRP) in inferring QoE metrics. Figure 10.4 compares

the accuracy of the Boosting classifier in inferring rebuffer events with and without

the RSRP values. We observe that the average increase in accuracy, with RSRP as an

191



Too Late for Playback Chapter 10

Figure 10.4: Inferring video rebuffering using Boosting with and without RSRP as
an input feature.

input, is 9.28%, while the maximum gain is 18.61%. This result could be attributed

to the exposition of the relationship, by the non-linear models, between RSRP and

throughput to successfully identify the target metrics at any given location. This

study highlights the importance of LTE-specific RSRP measurements in accurately

predicting rebuffering and resolution switching.

10.4 Related Work

Prior work most similar to ours, which focuses on quantifying the user experience,

typically infers the QoE of video streaming from QoS of fixed broadband networks

[240, 241, 242]. In contrast, our work focuses on mobile broadband, which often ex-

hibits a wide variation in performance over time and space. Some past work on mo-

bile broadband, such as [243, 244, 245, 246], has examined metrics solely from the ap-

plication and network layers. [247, 248, 208, 102, 112, 209] require direct access to (en-

crypted or unencrypted) network traffic to infer video QoE. In contrast, our approach

is independent of network traces and incorporates low-cost signal and throughput

measurements for rapid QoE prediction. Few publicly available QoS datasets in-
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clude synchronous RSRP measurements. [249, 122, 250] analyze network traces that

contain performance indicators captured during streaming sessions and experiment

metadata from mobile broadband networks. All of these datasets, however, have lim-

ited types of datapoints (primarily from dense, urban locations); the datasets have

minimal to no measurements from networks that are under-provisioned or located

in remote regions. We believe it is challenging to utilize existing prior datasets (pri-

marily urban scenarios) to evaluate diverse network conditions in the context of the

measurements examined in this work, either due to the non-overlapping and non-

scalable nature of prior measurements or the lack of a comprehensive and represen-

tative dataset. Further, the accuracy of our models, given the inexpensive measure-

ments, indicates the feasibility and scalability of our approach.

Prior work focused on charting the relationship between RSRP and QoE has im-

portant limitations. For instance, [94] presents a mapping of RSRP and video QoE

derived using only simulated experiments. The authors of [251] explore the effect

of radio link quality, such as RSRP, on streaming video QoE. The presented results

are limited in scope as their setup streams a custom video hosted on their server;

by omitting evaluation of a popular streaming service, such as YouTube or Netflix,

the work does not accurately capture the application and network performance ex-

perienced by actual users. [252] undertakes a study similar to ours, with a modest

dataset that is limited to a small portion of a local transit route and thus difficult to

generalize.

10.5 Conclusion

We collect 16 datasets with widely varying performance profiles through an exten-

sive measurement campaign. Our dataset includes representation of: i) the variability
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of mobile broadband performance as a consequence of either sparse deployments or

network congestion, and ii) the communities most likely to depend on mobile broad-

band (rural areas). Our analysis highlights the challenges of quantifying QoE metrics

at scale, particularly in remote locations. To address this challenge, we develop learn-

ing models that use low-cost and easily accessible QoS data (LTE-specific RSRP and

throughput) to predict QoE metrics. Our models can be generalized to video content

from different genres, as well as to other locations that share network characteristics

similar to those of our dataset. The observed efficacy of the models indicates that

video QoE can be more easily and scalably determined within difficult-to-assess re-

gions using low-cost QoS measurements. For instance, given the increased load on

video streaming platforms during COVID-19 [219], cellular operators could employ

our approach to detect sectors with possible bottlenecks without relying on user feed-

back/complaints, particularly in remote locations. This can lead to faster turnaround

times for network troubleshooting [253], and therefore may lower outage periods for

users heavily dependent on video streaming. The last three chapters have focused

solely on the performance of mobile networks. In the next and final chapter, we ex-

plore a system built for fixed broadband that enables faster in-network processing of

applications using network accelerators.
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Chapter 11

AKIDA: Accelerating In-Network,

Transient Compute Elasticity using

SmartNICs

11.1 Introduction

The proliferation of the Internet of Things (IoT) and the success of rich cloud

services have pushed the horizon of a new computing paradigm, edge computing,

that requires faster data processing at the network’s edge. The edge computing mar-

ket is expected to reach close to $9 billion by 2025 [254]. As a specific example,

the significant factors driving the growth of the IoT in the manufacturing market

include growing demand for industrial automation in the manufacturing industry,

rising need for centralized monitoring and predictive maintenance of resources, rise

in the number of cost-effective and intelligent connected devices and sensors, among

others. To keep up with this demand, there has been a shift to serverless frameworks

for computation [255, 256]. Serverless frameworks allow IoT applications to be de-
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ployed within minutes with the flexibility to reduce or expand operations seamlessly.

For instance, serverless functions provide authentication and encryption capabilities

on-site instead of uploading the data over a vulnerable network to the cloud. This

requires efficient scale up (or down) of edge computing infrastructure for transient

spikes in serverless workloads.

However, managing edge computes capacity on the fly, i.e., transient compute elas-

ticity, carries specific challenges [257, 258]. First, the expanding edge deployments are

time and resource-intensive. A typical solution is to over-allocate resources for possi-

ble future demand. However, over-allocation leads to under-utilization for the most

part and is economically undesirable. Edge computing requires careful planning of

the available resources in-situ to achieve its primary objective of faster processing and

reduced latencies. Second, and most importantly, sudden spikes in demand for pro-

cessing could create compute bottlenecks, leading to service level agreement (SLA)

violations. SLA comprises the agreed-upon QoS (Quality of Service) attributes mon-

itored regularly; failing to meet the QoS attributes can attract hefty penalties. In this

context, we ask the following research question: How could we design an architecture

that can handle sudden spikes in demand, address transient elasticity, and allocate compute

resources efficiently?

We propose AKIDA, a new edge computing platform that leverages heterogeneous-

computing nodes (including domain-specific accelerators like SmartNICs) to dynam-

ically allocate computation requirements for workload spikes with minimal cold start

latency. We use SoC-based SmartNICs to predict and intelligently load-balance con-

tainerized serverless workloads across the heterogeneous-compute resources. AKI-

DAuses untapped general-purpose compute on SmartNICs for in-network applica-

tion processing when demand escalation is imminent. SmartNICs are ideal candi-

dates for application offload because: (i) they are closer to the data ingress pipeline
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that enables them to bypass the network stack overhead at the host server, (ii) of the

availability and proximity of SoC-based onboard compute for application process-

ing [259, 260], (iii) they are a feasible alternative to the traditional servers for short

term compute, and (iv) unused compute cycles on the SmartNICs can be re-purposed

for workloads. This is the first study to propose containerized application offload to

SoC-based SmartNICs to our knowledge. Although prior works have studied the

applicability of offloading specific parts of applications, e.g., using P4 programma-

bility, actor-programming paradigm, etc. [261, 262, 263], those studies are limited to

particular applications and require code modification for other types of application

offload. In contrast, AKIDAis designed to offload a network of containers onto the

SmartNIC, making it truly application-agnostic and scalable. Our platform has three

unique elements: (i) a workload predictor, (ii) a traffic distributor, and (iii) an or-

chestrator. The workload predictor estimates the potential change in demand for the

next time horizon by extracting fine-grained input features from historical time-series

data. The traffic distributor distributes the traffic based on the transient spikes and

CPU load on each cluster node. Finally, the orchestrator sets the threshold levels for

intelligent traffic distribution to cluster nodes and manages the end-to-pipeline for

application processing. It also can reallocate workloads on the fly to the SmartNICs,

if the incoming requests for an application suddenly change.

AKIDA’s orchestrator can be generalized for scaling edge across multiple servers

and different kinds of SmartNICs. Stated otherwise, our system can be scaled to

offload applications across different dimensions of heterogeneity (for instance, if the

cluster introduces additional compute nodes). This approach enables us to secure a

competitive advantage compared to legacy edge architectures and deployments.

This chapter makes the following key contributions:

• Design of a novel architecture that leverages heterogeneous computing nodes
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(SmartNICs and host server) to facilitate efficient handling of transient spikes

at the edge;

• Development and characterization of workload predictor and orchestrator that

work in tandem to reduce SLA violations, efficiently handle spikes in demand,

and reduce cold start latency;

• Characterization of competitive advantages of our architecture through an in-

depth analysis of capital expense costs and overhead savings from minimizing

SLA violations. Our investigation reveals that capital expenditure (CAPEX)

can be reduced by � 1.5⇥, while the operational expenditure (OPEX) can be

decreased by 3.5⇥. In addition, our architecture demonstrably reduces SLA

violation by as much as 20% in real-world deployments.

11.2 Background

This section provides an overview of multicore SoC-based SmartNICs, and how

they are integrated into the edge computing platform. In addition, we briefly discuss

the edge computing architecture and explore some common SLA violations typically

prevalent in this context.

11.2.1 SmartNICs

There are broadly three categories of network accelerators or SmartNICS: ASIC,

FPGA, and SoC-based SmartNICs [264, 262]. In this study, we focus on SoC-based

SmartNICs only. Multicore SoC-based SmartNICs use embedded CPU cores to pro-

cess packets, trading some performance to provide substantially better programma-

bility than ASIC-based designs. (e.g., DPDK-style code can be directly run on a
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familiar Linux environment). For instance, Mellanox Bluefield [259] uses general-

purpose CPU cores (ARM64), while others, like Netronome [265], have specific cores

for network processing.

SoC-based SmartNICs (e.g., Mellanox) have two modes of operation: Embedded,

and Separated modes. The interfaces are mapped to the host OS network stack in

embedded mode, and the kernel routes packets from the host. The host OS and the

SmartNIC have separate, independent network stacks to process packets in the sep-

arated mode. While we observe slightly better tail-latencies from packet processing

in embedded mode, the offset from separate mode is negligible. For AKIDA, we

adopt the separated mode due to its programmable flexibility and the ability to run

containers directly on the SmartNIC’s ARM64 OS.

11.2.2 Edge Computing

The adaption of cloud computing platforms is increasing rapidly. However, effi-

cient processing of the data that has been produced at the edge of the network is a

challenging task. Data-driven applications are increasingly deployed at the edge and

will consequently benefit from edge computing, which we explore here.

Networking bottlenecks:

Compared to the fast-developing cloud-based processing speed, the network band-

width has reached a standstill. With the growing quantity of data generated at the

edge, the rate of data transportation is becoming the bottleneck for the cloud-based

computing paradigm. For instance, we expect autonomous vehicles to output a vast

amount of data per hour that needs real-time processing. In this instance, edge com-

puting is beneficial over cloud computing because of the significant savings in latency

overheads. Additionally, scaling these pipelines for multiple vehicles would require
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computation at the edge, not the cloud.

Explosion of IoT: Almost all kinds of electrical devices will become part of IoT, and

they will play the role of data producers and consumers, such as air quality sensors,

LED bars, streetlights, and even an Internet-connected microwave oven. Reports sug-

gest that the number of IoT devices at the edge will develop to more than billions

in a few years [266]. Thus, the raw data produced will be enormous, making con-

ventional cloud computing not efficient enough to handle all this data – application

processing at the edge could account for this surge in demand.

Data producers: In the cloud computing paradigm, the end devices at the edge

typically are data consumers. For example, they are consuming on-demand video

streams on a smartphone. However, vast amounts of data are now produced by the

said-consumers. Changing from a data consumer to a data producer requires more

placement of functionalities at the edge.

11.2.3 SLA Violations

Service Level Agreements are critical when applications are deployed in a Service

Oriented Architecture (SOA). SLAs are commonly adopted in cloud computing and,

more recently, at the Edge. SLA defines the level of service the consumer expects

based on metrics that the application provider lays out. SLA composes of the metrics

by which the service is measured, such as monitoring the QoS (Quality of Service)

attributes [267, 268], and the remedies or penalties if the metric measurement does

not meet the agreed-on service level termed as SLA Violation. Some of the most

common QoS attributes that are part of SLA are response time and throughput,

we primarily focus on response time.

In Edge Computing, where there are limited resources when the application re-
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ceives multiple queries at scale, the response time suffers high tail latency. This

problem is further strained when the host OS has an additional background work-

load for other applications or maintains the edge infrastructure for its Network and

Storage needs. This leads to SLA violation and the consumer’s poor application

Quality of Experience (QoE). We use the response time metric in Sec. 11.4 to evaluate

the penalty with and without additional processing units such as SmartNICs.

11.2.4 Need for Accelerators

There has been a lot of research recently in the industry regarding using Smart-

NICs in cloud data center servers to boost performance by offloading computa-

tion in servers by performing network datapath processing. This section explains

why SmartNICs are essential in the new generation of high-performance computing

servers.

The cost of building an interconnection network for a large cluster can signifi-

cantly affect the choice of design decisions. With increasing network interface band-

widths, the gap between the network performance and compute performance is

widening. This has resulted in increased adoption and deployment of SmartNICs.

If SmartNICs were leveraged to offload only network functionalities, it would add

30% more computational capacity to the current servers [269]. Typically, SoC-based

SmartNICs are priced at 25-30% the cost of Data Center Servers. Therefore, adding

a SmartNIC to perform only network functions is a wise decision. However, the

SmartNICs can do more than network functions. As per our initial analysis, the

compute capacity of an SoC-based SmartNIC is generally around 40-50% of server

compute capacity. If additional compute is required within this range, exploiting

the total capacity of SmartNICs to manage workload spikes instead of servers is a
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more economical decision. However, all that compute available on SmartNICs is cur-

rently primarily used for offloading network functions and services. In most cases,

that is a severe under-utilization of the available compute power on SmartNICs. It is

this under-utilized compute that AKIDA aims to harvest and make available to the

applications.

11.3 System Overview

We begin by providing an overview of AKIDA, an intelligent fabric software

framework that can be deployed on any container orchestration supporting Oper-

ating Systems such as Servers/Server Racks, Network Switches, or Edge-systems.

Figure 11.1 shows the various components of AKIDA framework. The server can

host any number of SmartNICs as the number of PCIe buses available. We use Ku-

bernetes as the container orchestration system that runs on the host and SmartNIC

OS, and this specialized architecture works only on SoC-based SmartNIC architecture

[259].

The major components of our core solution consist of (i) a traffic distributor module

that distributes the traffic based on the service time and CPU load of each server and

SmartNIC, (ii) a workload prediction module that uses the history of the workload in

a window to predict the workload spikes and (iii) the AKIDA orchestrator module

manages the workload spikes based on the load on the servers and SmartNICs. In

the following, we describe our solution to each module.

11.3.1 Traffic Distributor

The current serverless computing design assumes that all computing resource
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Figure 11.1: System overview.

Figure 11.2: Traffic distributor.

nodes are homogeneous and have the same service time and the same amount of

load. In this chapter, we show that this assumption leads to degraded performance

of workloads running on multiple nodes, especially when one of the compute nodes

get overloaded or takes more time to service the requests. To clarify the problem, con-

sider two serverless functions A and B that take 2/10 seconds to run on the SmartNIC

and 1/5 second to run on the host OS, respectively, but when the load on the host

OS gets overloaded with other workloads, the response times on the host OS changes

to 3/8 for functions A and B respectively 1. In this example, it is better to run the

1We note that these numbers are subject to change time to time depending on the workload burst
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two functions on the host OS when the host OS is not overloaded, and when it gets

overloaded, function A can be offloaded to the SmartNIC.

11.3.2 Traffic Distributor

In our design, the queries first arrive at the API gateway of the scheduler within

the SmartNIC OS, where our traffic distributor distributes the traffic according to

the service time of each SmartNICs’ ARM core or host OS’s core within a server.

We note that the service time of each function is subject to change depending on

the workload spikes. Assuming the requests arrive with the arrival rate of l and

assuming each host OS and SmartNIC have a service rate of µi and have an M/M/1

queue at each server, the optimal traffic distributor that makes the sojourn time equal

for each queue is as follows:

l1 � µ1 = l2 � µ2 = ... = ln � µn (11.1)

In other words, the optimal traffic distribution on N servers is as follows:

li = µi +
l � ÂN

j=1 µj

N
i = 1, ..., N (11.2)

In the evaluation, we use a heuristic approach and try to avoid distributing the

traffic on a cluster node with very high service time due to workload spikes. The

queries are then redirected to the appropriate containerized application pods running

either on the Host or SmartNIC OS.

and resource congestion on the SmartNICs and host OS servers.
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11.3.3 Workload Prediction

To provision the workload spikes proactively to meet the required Service Level

Agreement (SLAs), we predict the future workload demands ahead of time. We

propose a support vector regression (SVR) prediction model that predicts the work-

load bursts to trigger the traffic distribution module and also mitigate the impact of

containers’ cold start latency [270, 271, 272, 273] that can generally lead to a longer

response time to application queries otherwise. Our prediction model is based on the

past observations of the workload over a window size of W time units. We change

the window size dynamically based on the workload variations over time. We in-

crease the training window size if the workload variation over the current window is

less than 10% and decreases once the workload variation is more than 20%.

11.3.4 AKIDA’s Orchestrator

AKIDA, consists of a resource monitoring module and exploits the output of

the prediction module. The resource monitoring module periodically monitors each

node’s CPU, memory utilization, and service rates in the serverless platform. If the

CPU utilization gets higher than a specified threshold D, or if the service rate of ap-

plication X on one of the nodes in the cluster gets higher than the specified SLA, we

re-distribute the workload to dampen the spikes. We use the output of the workload

prediction module to predict future spikes ahead of time and perform proactive spike

management. Pro-active spike management that exploits the prediction module has

two benefits: (i) first, we can re-distribute the traffic based on the predicted future

workload, which avoids specific server nodes from getting congested, and (ii) second,

it mitigates the containers’ cold start latency by starting new containers before the ac-

tual load arrives. The spike management module updates the service rate, µi of each
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node in the cluster and requests arrival rates in the traffic distributor module, and

triggers a new traffic distribution command if the spikes are higher than a specified

threshold or the mean service rate of a node in the cluster increases and violate the

specified SLA metric.

11.3.5 Auto-scaler

After splitting the traffic between multiple queues, we scale up/down the number

of replicas at each queue. Our auto-scaling algorithm is based on the arrival rate of

the predicted workload at time t, (i.e., lt), the current number of replicas rt, and the

current service rate of the replicas at each server/SmartNIC (µt). We can draw the

system utilization as follows:

rt =
lt

rtµt
(11.3)

Then we calculate the probability that the queue is idle as follows:

Po = 1/[
rt�1

Â
n=0

(rtrt)n

n!
+

(rtrt)r
t

rt!(1 � rt
] (11.4)

The queue length is

Lq =
rrt

t rrt+1
t

rt!(1 � rhot)2 P0 (11.5)

and the expected waiting time on the queue is Tq = Lq/lt. Given the current

number of replicas and the system’s service time, we calculate the system’s latency

Tq + Ts + 2d (where 2d accounts for the auto-scaling startup latency) if the latency

was larger than the target SLA, we increment the number of replicas and calculate

the optimal number of replicas using a binary search algorithm. If Tq + Ts + d was

smaller than the target SLA latency, we scale down and find the optimal number of

replicas using a binary search algorithm.
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DL360 Gen9 Server

external
internal

Network Switch

DL360 Gen9 Server

Figure 11.3: Real world experimental setup.

11.4 Competitive Advantages

We set up the testbed of AKIDA using DL380 Gen9 Servers and two Mellanox

Bluefield [259] SmartNICs per server as shown in Figure 11.4. We deployed a Kuber-

netes cluster over both server and SmartNIC OS to obtain heterogeneous multicore

cluster nodes.

We implemented a prototype based on OpenFaaS serverless infrastructure. We

evaluated it on three popular serverless workloads, (i) CPU-intensive Fibonacci func-

tion, (ii) latency-sensitive key-value store, and (iii) a sentiment analysis function that

uses machine learning to perform natural language processing. We build the func-

tions to run on a multi-architecture platform, including x86 host OS and the Smart-

NICs’ ARM core.

We first run initial experiments to find the compute capacity of SmartNICs by

running Fibonacci functions on SmartNICs and Host. We observe the compute ca-

pacity close to that of the host’s resources. Figure 11.4(a) shows the execution time

of running the Fibonacci function on the host OS and the SmartNIC as we increase

the Fibonacci number to compute. We observe that SmartNICs have comparable

compute capacity as x86-64 Hosts, which assures that the SmartNICs are capable of
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running workloads and processing incoming packet traffic.

We also ran initial experiments on an online prediction model to predict future

workloads ahead of time to narrow down the best-performing algorithm that works

well with our solution. We used 10,000 data points from real serverless workloads

that provide an appropriate workload for a ride-sharing application to request a

ride [274, 275]. Figure 11.4 shows the workload prediction using the RBF and linear

kernel in the SVR prediction model when we train the model over a window size of

100 seconds and predict the future workload d seconds ahead of time. As shown, the

RBF kernel performs better than the linear kernel. In the following sub-sections, we

investigate data centers’ different design choices to manage the load spikes.

a. Response time of b. Predicting the workload
the SmartNIC and host OS. d seconds ahead of time where d = 10.

Figure 11.4: Experimental results on the real world testbed.

11.4.1 Performance Benefits

To evaluate the performance benefit of using SmartNICs in the cluster when hav-

ing a high CPU load, we perform a set of experiments on the three serverless func-

tions in our testbed using OpenFaas serverless platform with the hey HTTP(S) load

generator [276] and emulate transient spikes using a stress tool[277]. Figure 11.5
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a. Fibonacci. b. Key-value store. c. Sentiment analysis.

Figure 11.5: Response time distribution of different functions.

shows the response time distribution for different functions. The SLA threshold is

specified by the application and exposed to the scheduler. We first run the default

OpenFaas scheduler on one server, we introduce stress on the host server and in-

crease the average CPU utilization to 80% by running background serverless work-

load with 200 average queries per second (Case 1: 1 server with background work-

load). The tail latency increases when the host OS has a high load, leading to SLA

violations. Adding another server with uniform traffic distribution (default Kuber-

netes scheduler) in the baseline (2 servers, one with background workload and one

without background workload) does not solve the problem since half of the queries

are routed to the overloaded host. Next, we run the workload on 2 servers with

load-aware proportional traffic distribution (Case 2: two servers with proportional

traffic distribution similar to AKIDA’s traffic distributor). In AKIDA, we detect the

overloaded node in the cluster and avoid routing the traffic to that node. We run

AKIDA in two cases when having one SmartNIC and two SmarttNICs on the same

server. Although the SmartNICs have lower computational power than the host OS

when a transient spike overloads the CPU, AKIDA leverages SmartNIC’s compute

capacity to reduce SLA violations.
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11.4.2 Cost Benefits

In this section, we perform a cost analysis of the cluster design choices based

on the actual CPU utilization dataset in [278] to compare the network design of

over-provisioning the servers to meet SLA during the workload spikes and by using

the SmartNICs to manage the spikes. We assume a SmartNIC is about 15-20% of

the cost of a server. We calculate CAPEX and OPEX for three resource deployment

scenarios, i) two servers, ii) one server and one SmartNIC, and iii) one server and

two SmartNICs at each edge node to accommodate the spikes. The x-axis shows the

number of edge nodes at each case (i.e 1 edge node + 1 extra server, 1 edge node

+ 1 SmartNIC, and 1 edge node + 2 SmartNICs). Figure 11.6(a) shows the capital

expenses for building a cluster in (i), (ii), and (iii). As shown, the SmartNICs provide

an extra computational capacity to the cluster at a much lower cost. The total cost

of the cluster reduces by a factor of 1.5 and 1.55 when using one or two SmartNICs

at each x86 host, respectively. This section’s CAPEX and OPEX cost calculations are

based on rough numbers available for cost and maximum energy consumption of the

servers and SmartNICs in our testbed. Figure 11.6(b) shows operational expenses by

tracking maximum power (one of the main contributors to OPEX) used in the cluster

for Cases i, ii, and iii. The SmartNICs used in our testbed are 3.5x more energy

efficient than the host server. Figure 11.6(b) shows that the maximum power usage

of the cluster reduces by a factor of 1.5 and 1.27 when having one or two SmartNICs

at each server, respectively.
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a. Capital expenditure. b. Operational expenditure.

Figure 11.6: Operational performance as the cluster size increases.

11.5 Discussion

Industry Implications

There has been a tremendous rise in the adoption of Function-as-as-Service (FaaS),

potentially due to their economically attractive services with drastically reduced op-

erational costs compared to Infrastructure-as-a-Service (IaaS). Enterprises like Clear-

Blade, EdgeConneX, and Edge Intelligence focus on running FaaS workloads at the

edge instead of processing data at a data warehouse. We believe AKIDA could drasti-

cally improve the scalability of computing resources at a fraction of the cost of adding

bare-metal servers, as is traditionally done. In addition, conventional cloud service

providers like AWS and Microsoft Azure could benefit from freed-up compute cycles

from the host servers (offloaded to SmartNICs), which then can be re-purposed to

client-based compute allocation, thereby increasing revenue.
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Challenges in Hardware-Offload

In this section, we enumerate some challenges we faced and lessons learned while

developing AKIDA. Challenges can broadly be classified into hardware- or software-

based, as described below.

Hardware-based: Manufacturers have yet to make SmartNICs universally com-

patible with all available bare-metal options. Additionally, to scale a platform like

AKIDA, it is imperative to have a vendor-agnostic solution. For instance, SoC-based

SmartNICs could offer a universal protocol to set up Linux environments effortlessly;

they are currently tightly coupled into their vendor-designed architectures, which in-

volves procedural effort for initial setup. However, we note that this is relatively

easier to achieve than setting up bare-metal servers that require infrastructure-based

protocols to be followed during setup.

SoC-based SmartNICs, which are generally "off-path" in architecture design, con-

tain a "nic-switch" [262] that determines the packet’s path once it enters the physical

interface. This "nic-switch" has a rigid design based on the vendor’s architecture,

and therefore, latency performance is skewed for embedded or separated modes.

Moreover, most SmartNIC vendors only enable embedded mode, which further chal-

lenges the deployment of AKIDA framework—allowing flexibility of the "nic-switch"

can potentially lower latency and improve the performance of AKIDA.

Software-based: SoC-based SmartNICs typically embed an ARM64 architecture,

while bare-metal solutions usually are built on an x86 architecture. This hetero-

geneity in system architecture requires us to develop and make available serverless

applications (container images) for each system type (ARM65 and x86) – leading to

higher temporal overheads. Further, AKIDA framework is developed for SoC-based

SmartNICs [264, 262], given the need for an Linux-based operating system to run
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container orchestration (that executes the workloads). Further research is required to

develop AKIDA-like solutions for ASIC- and FPGA-based SmartNICs.

Previous work [262] has demonstrated the efficiency gain in offloading network-

ing functions onto the SmartNICs. However, SmartNICs have limited computation

capacity when compared to server OS. For example, SmartNIC in our testbed has 16

processing threads with 312.50 flops, and the host server has 40 processing threads

with 4604.74 available flops. So, modules (in kernel space) that prioritize networking

functions over application workloads are necessary to ensure proper functionalities

of network processes. Moreover, careful monitoring is needed to ensure the area

under the curve (AUC) for workload spikes does not exceed the compute capacity

of SmartNICs (serverless functions typically have smaller footprints). Lastly, to min-

imize cold-start latency of the initial offload (potentially have higher tail latencies),

seed pods need to be warmed up on the offload devices at all times. This approach

can incur a small computation overhead.

11.6 Related Work

Recent research on SmartNICs focuses on leveraging the compute power to of-

fload various application workloads [261, 263, 262, 279]. The study focuses on mov-

ing small functions onto the SmartNIC OS. At the same time, AKIDA is a frame-

work that can offload complete workload containers onto the SmartNIC OS, lever-

aging the separated-host mode (Sec 11.2.1) of SoC-based SmartNICs. Most other

research on SmartNIC hardware offloading is limited to network functions such as

load-balancing, firewall, etc. [280]. In AKIDA, we differentiate by offloading appli-

cation workloads as containers, not just functions. We showcase the benefit and also

explore the challenges.
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Traffic spike management is a well-explored problem space in the cloud and net-

works [281, 258], where user queries surge can lead to downtime and poor QoE.

At the edge, it can be pretty challenging to deal with traffic spikes, and the most

common business solution is over-provisioning computing resources [282, 283]. We

differentiate by utilizing SmartNICs to address transient spikes at the edge, thereby

enabling transient elasticity of resources. SmartNICs are limited in compute capacity,

so it is critical to offload essential workload. Therefore, AKIDA’s approach to offload

only during traffic spikes validates the approach given the CAPEX and OPEX savings

without much application performance degradation.

In that aspect, Serverless applications are gaining popularity to be deployed at

the edge for AI, security, and storage workloads [255, 256]. Certain body of re-

search have explored offloading functions of applications onto SmartNICs process-

ing units[261, 262, 263]. For instance, Lambda-NIC [261] demonstrates offloading

data plane programming functionality of serverless applications to ASIC SmartNICs.

While iPipe [262] offloads applications designed in actor-programming model. In

AKIDA, we adopt a novel approach of offloading the entire containerized serverless

application (small function containers) onto the SoC-based SmartNIC OS by estab-

lishing SmartNIC OS as nodes in the cluster network. While we move the whole

container to the Smartnic, [261] rely on P4 programmability to offload a small part of

applications to the SmartNic. In [261] the host and the Smartnic are one single node

in the Kubernetes cluster, and changing the application requires code modification

to offload to the SmartNic, while in our framework, the SmartNic is one of the nodes

in the cluster and can leverage the Kubernetes orchestration system for scheduling,

auto-scaling, etc.
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11.7 Conclusion

This chapter proposes a new platform that leverages the SmartNICs’ computa-

tional capacity to offload and accelerate serverless workload in the presence of tran-

sient traffic spikes at a lower cost. Our solution is three-fold. First, we propose

a novel system architecture leveraging container orchestration systems to distribute

the workloads between Hosts and SmartNICs based on the demand for transient

elasticity of resources. The next challenge we solve is to manage the workload spikes

by exploiting the unused computational capacity of the SmartNICs to avoid SLA vi-

olations. Finally, we propose a novel workload prediction approach that predicts the

transient spikes and starts the containers before the actual load arrives in the system

to mitigate the containers’ cold start latency. Accounting for transient elasticity using

SmartNICs has the added benefit of provisioning a hybrid cloud and edge deploy-

ment, with the flexibility to scale edge deployments when required. This could lead

to faster turnaround times for system administrators executing decisions to allocate

compute cycles. While this study focuses on transient elasticity for workload spikes,

AKIDA architecture can be leveraged for building a generalized system for federated

edge infrastructure with heterogeneous DPUs such as GPU and SmartNICs.
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Chapter 12

Conclusion and Summary

12.1 Conclusion

Access to the Internet is critical to the information capital of all communities. Con-

nectivity is a central component in modern-day technology; however, current designs

and their deployments for widespread connectivity are driven by economic feasibil-

ity. Such deployment policies have an adverse effect on the availability of usable ser-

vice quality across geographies. Even in cases where networks are well-provisioned,

they are done based on a median historical demand. Stated otherwise, network plan-

ning and deployment are still reactive in nature. However, we have witnessed massive

socio-economic changes over relatively short periods, a phenomenon well exempli-

fied by the COVID-19 pandemic and slated to continue in the future. To ensure basic

connectivity and usable service quality in rapidly changing times, network planning

and deployment strategies need to be more predictive, not just proactive.

This dissertation integrates the field of network performance measurement with

predictive systems. It focuses on using passive and inexpensively-accessible active

measurements to inform the deployment of adaptive systems in real-world networks.
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The presented research approach has two cornerstones: (i) identification of problems

in access and adoption of technology through in-depth measurements, and (ii) design

and implementation of predictive network systems to solve the identified problems.

Some of the fundamental problems in this domain are in core network systems design

and implementation, while others are for studying specific environmental factors that

influence network design, performance, and utilization. The contributions of our

research to date lie in the intersection of these problem sets and have the following

primary dimensions:

1. Network characterization of real-world networks in order to fully understand

the inadequacies users currently face [35, 4, 84, 97]

2. Predictive system design that are informed by our analysis to enhance the

performance of current network deployments [90, 109, 5]

Our work demonstrates multiple opportunities to rethink current designs and

implement demand-aware deployment strategies. We have characterized last-mile

connectivity in numerous locations to gain insight into performance and built sys-

tems based on our observations. We then designed and implemented systems that

can infer congestion on the network side and systems that accurately predict the

quality of experience for the end-users.

12.1.1 Network characterization

To increase connectivity, we must first understand the performance of networks

as they operate today. We study both mobile- as well as fixed-broadband networks

so that we may identify avenues for improvement.

Mobile devices today are equipped with multiple interfaces, creating usage op-

portunities for protocols such as Multipath TCP (MPTCP), which enable devices to
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use more than one interface concurrently. One of the biggest hurdles in implementing

MPTCP is the heterogeneity in performance characteristics across multiple interfaces.

We perform controlled and real-world experiments over multiple paths with differ-

ing loss rates and round trip latencies to assess the effect of primary path selection

and the range of issues that arise from selecting the under-performing path. Using

results from our experiments, we show how heterogeneous paths can adversely affect

MPTCP performance, especially when one path is lossy.

In the context of FCC LTE maps that drew intense criticism for overstating cov-

erage, our assessment in New Mexico indicates that physical assessments of cellular

coverage and quality are essential for evaluating actual user experience. However,

measurement campaigns can be resource, time, and labor-intensive; therefore, more

scalable measurement strategies are urgently needed. To that end, we assess the

accuracy of a low-cost, small form-factor RTL-SDR for sensing LTE eNodeB signal

strength over a wide area through integration with an off-the-shelf quadcopter UAS.

Our observations reveal that the simple RTL-SDR has comparable accuracy to expen-

sive solutions and can estimate quality within one gradation of accuracy compared

to user equipment (i.e., mobile phones).

Next, we evaluate the validity of the criticism towards FCC coverage maps using

a quantitative analysis of both the dataset from which the FCC based its report, a

crowd-sourced LTE coverage dataset, and our measurements on the ground. To that

end, we performed a controlled measurement campaign in northern New Mexico in

May 2019. We find that both FCC and crowd-sourced datasets report higher coverage

relative to our controlled measurements, with the former showing a higher degree of

over-reporting than the latter. Understanding the causes of these inconsistencies is

vital for effectively using crowd-sourced data to measure LTE coverage, especially as

crowd-sourcing is increasingly viewed as preferable to provider reports.
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Finally, coverage reports that show service quality as a binary indicator does not

cleanly capture end-user experience. We develop a robust measurement suite to

conduct a unique measurement campaign in tribal, rural, and urban regions, repre-

senting a variety of under-provisioned, congested, and well-provisioned operational

LTE networks run by four major providers. In the regions we study, LTE networks

in tribal and rural locations have significantly higher QoE degradation than urban

locations, typically also worse than congested networks.

Contributions and impact: Our work has gained attention in the networking re-

search community. Our MPTCP study was presented at ICCCN 2019 conference.

The observations in our UAS assessment of LTE networks were presented at IEEE

MASS 2019. The comparison of FCC coverage maps with our ground truth measure-

ment was published in the Communications of the ACM (March 2022). Lastly, our

Coverage is not binary paper was published at ICCCN 2021.

12.1.2 Predictive system design

We leverage our insights from the measurement studies to design predictive sys-

tems aimed at closing the gap between connectivity and actual usability.

To remedy this disparity between reported coverage and actual service quality, we

design and implement Lumos – a novel solution to infer overload in LTE networks

based on messages broadcast by the eNodeB. Through the analysis of multiple mes-

sage types, we draw clear comparisons between instances of high network utilization

and typical operating conditions for several eNodeBs. Our results indicate that eN-

odeBs demonstrate measurable performance differences indicative of overload con-

ditions.

It is equally critical to draw parallels between network overload and congestion.
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We design Edain – a comprehensive networking monitoring suite, to evaluate QoS

and QoE metrics due to network overload. Our system implementation shows that

eNodeBs demonstrate measurable performance differences indicative of overload

conditions and network congestion.

Further, the wireless nature of LTE networks necessitates that QoE is evaluated

in multiple locations per base station as factors such as signal availability may have

significant spatial variation. As we studied the performance across networks that

vary spatially and temporally, it became critical to create a system that infers the state

of QoE for end-users at scale, using inexpensive and easily accessible measurements.

Therefore, we built a comprehensive set of network models that accurately predicts

various QoE metrics, such as rebuffering and quality switching events.

Lastly, there has been a rise in demand for processing applications at the edge.

However, scaling edge computing poses critical challenges. Service-level agreement

(SLA) violations typically occur due to workload bursts. We design and implement

a new architecture that strategically harvests the untapped compute capacity of the

SmartNICs to offload transient workload spikes, thereby reducing the SLA viola-

tions. We propose AKIDA, a low-cost and scalable platform that orchestrates seam-

less offloading serverless workloads to the SmartNICs, eliminating the need for pre-

allocating expensive compute power and over-utilization of host servers.

Contributions and impact: Our work on Lumos was the first to use passive mea-

surements to detect network overload. The study was presented at IMC 2019, one of

the most selective network measurement conferences. We extended Lumos to vali-

date network congestion using Edain, and the paper was published in IEEE Trans-

actions on Mobile Computing – a highly regarded journal. Our work on developing

predicting systems for QoE measurement was presented at Passive and Active Mea-

surement 2021, a top measurement conference. Finally, our work on AKIDA was the
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only project selected among 400 summer intern projects at Hewlett Packard Labs to

win the 2020 Best-in-Class award.

12.2 Summary

Access to technology will continue to drive development. Commercial network

expansions have successfully brought connectivity to most of the world. Still, the

remaining unconnected areas present significant challenges due to the sparseness of

users and lack of purchasing power. Providing adequate connectivity in such loca-

tions necessitates a thorough grasp of the current difficulties in designing network

solutions that deliver efficient service. This dissertation advances the field by ana-

lyzing network utilization and performance in previously unexplored scenarios. We

use these insights to find creative ways to enhance connectivity in these locations.

Current monolithic and homogenous solutions will continue prohibitively expen-

sive and undesirable for a substantial section of the world population. Therefore,

we must continue exploring a wide range of networking technologies designed for

resilient networks.
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[242] N. Goran and M. Hadžialić, Mathematical Bottom-to-up Approach in Video
Quality Estimation based on PHY and MAC Parameters, IEEE Access 5 (2017)
25657–25670.

242

https://github.com/keras-team/keras
https://scikit-learn.org/stable/modules/grid_search.html


[243] H. Chen, X. Yu, and L. Xie, End-to-end Quality Adaptation Scheme based on QoE
Prediction for Video Streaming Service in LTE Networks, in 2013 11th International
Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt), pp. 627–633, IEEE, 2013.

[244] S. Abdellah, M. Sara, M. N. El-Houda, and T. Samir, QoS and QoE for Mobile
Video Service over 4G LTE Network, in IEEE Computing Conference,
pp. 1263–1269, IEEE, 2017.
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